Loading…

Second metacarpal midshaft geometry in an historic cemetery sample

Study of bone mass at the second metacarpal midshaft has contributed to our understanding of skeletal growth and aging within and between populations and has relied extensively on noninvasive techniques and in particular radiogrammetric data. This study reports age, sex, and side variation in size a...

Full description

Saved in:
Bibliographic Details
Published in:American journal of physical anthropology 1998-06, Vol.106 (2), p.157-167
Main Author: Lazenby, Richard A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Study of bone mass at the second metacarpal midshaft has contributed to our understanding of skeletal growth and aging within and between populations and has relied extensively on noninvasive techniques and in particular radiogrammetric data. This study reports age, sex, and side variation in size and shape data acquired from direct measurement of cross‐sections obtained from a large (n = 356), homogeneous skeletal sample. Correlation analysis and three‐way ANOVA of size‐adjusted data confirm general impressions of patterned variation in this element: males have absolutely but not necessarily relatively larger bones than females; the right side is larger than the left, though a larger than expected proportion (approximately 25%) of left metacarpals exhibits greater values than the right; and bone mass but not strength (in males) declines with age. Contrary to the widely accepted assumption of circularity for this location, direct measurement of cross‐sectional geometry confirms previous biplanar radiogrammetric conclusions regarding the noncircularity of the second metacarpal midshaft and identifies a significant difference between males and females, with the latter having a more cylindrical diaphysis. Deviation of the axes of maximum and minimum bending strength associated with noncircularity suggests a distribution of bone mass to resist bending moments perpendicular to the distal palmar arch, though this conclusion awaits more robust study of the functional anatomy of the metacarpal diaphysis. Am J Phys Anthropol 106:157–167, 1998. © 1998 Wiley‐Liss, Inc.
ISSN:0002-9483
1096-8644
DOI:10.1002/(SICI)1096-8644(199806)106:2<157::AID-AJPA4>3.0.CO;2-N