Loading…

Discordant expression of heat shock protein mRNAs in tissues of heat-stressed rats

Although the induction of heat shock proteins (HSP) has been studied extensively in cultured cells, comparatively few studies have examined their expression in vivo. In this report, mRNA expression of two HSP families, HSP70 and HSP27, was investigated in brain, liver, lung, and skin of rats exposed...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 1990-09, Vol.265 (25), p.15275-15279
Main Authors: BLAKE, M. J, GERSHON, D, PARGNOLI, J, HOLBROOK, N. J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Although the induction of heat shock proteins (HSP) has been studied extensively in cultured cells, comparatively few studies have examined their expression in vivo. In this report, mRNA expression of two HSP families, HSP70 and HSP27, was investigated in brain, liver, lung, and skin of rats exposed to elevated ambient temperatures. The time course and relative magnitude of the heat-induced expression for these two HSP differed between tissues of the same animal. Even within the same tissue, HSP70 and HSP27 displayed differential kinetics of induction. In brain, lung, and skin, induction of HSP70 was dependent on the duration and temperature of the heat stress. This induction was transient with maximal HSP70 expression occurring at 1 h and returning to baseline 3 h after removal of the animals from heat stress. In liver, HSP70 expression did not show a direct relationship with temperature conditions and maximal induction did not occur until 6 h after heat stress. Heat-induced HSP27 expression was dependent on time and temperature of exposure in lung and skin but not in brain and liver. These findings demonstrate that the heat shock response in vivo lacks much of the coordinate control of expression characteristic of cultured cell populations and suggest that mechanisms controlling this cellular stress response are influenced by physiologic factors that cannot be studied in vitro.
ISSN:0021-9258
1083-351X
DOI:10.1016/s0021-9258(18)77252-9