Loading…
Ligand-dependent dynamics and intramolecular signaling in a PDZ domain
Allosteric communication is a fundamental process that proteins use to propagate signals from one site to functionally important distal sites. Although allostery is usually associated with multimeric proteins and enzymes, "long-range" communication may be a fundamental property of proteins...
Saved in:
Published in: | Journal of molecular biology 2004-01, Vol.335 (4), p.1105-1115 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Allosteric communication is a fundamental process that proteins use to propagate signals from one site to functionally important distal sites. Although allostery is usually associated with multimeric proteins and enzymes, "long-range" communication may be a fundamental property of proteins. In some cases, communication occurs with minimal structural change. PDZ (post-synaptic density-95/discs large/zonula occludens-1) domains are small, protein-protein binding modules that can use multiple surfaces for docking diverse molecules. Furthermore, these domains have long-range energetic couplings that link the ligand-binding site to distal regions of the structure. Here, we show that allosteric behavior in a representative member of the PDZ domain family may be directly detected using side-chain methyl dynamics measurements. The changes in side-chain dynamics parameters in the second PDZ domain from the human tyrosine phosphatase 1E (hPTP1E) were determined upon binding a peptide target. Long-range dynamic effects were detected that correspond to previously observed pair-wise energetic couplings. These results provide one of the first experimental examples for the potential role of ps-ns timescale dynamics in propagating long-range signals within a protein, and reinforce the idea that dynamic fluctuations in proteins contribute to allosteric signal transduction. |
---|---|
ISSN: | 0022-2836 |
DOI: | 10.1016/j.jmb.2003.11.010 |