Loading…
Redox Properties of Human Transferrin Bound to Its Receptor
Virtually all organisms require iron, and iron-dependent cells of vertebrates (and some more ancient species) depend on the Fe3+-binding protein of the circulation, transferrin, to meet their needs. In its iron-donating cycle, transferrin is first captured by the transferrin receptor on the cell mem...
Saved in:
Published in: | Biochemistry (Easton) 2004-01, Vol.43 (1), p.205-209 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Virtually all organisms require iron, and iron-dependent cells of vertebrates (and some more ancient species) depend on the Fe3+-binding protein of the circulation, transferrin, to meet their needs. In its iron-donating cycle, transferrin is first captured by the transferrin receptor on the cell membrane, and then internalized to a proton-pumping endosome where iron is released. Iron exits the endosome to enter the cytoplasm via the ferrous iron transporter DMT1, a molecule that accepts only Fe2+, but the reduction potential of ferric iron in free transferrin at endosomal pH (∼5.6) is below −500 mV, too low for reduction by physiological agents such as the reduced pyridine nucleotides with reduction potentials of −284 mV. We now show that in its complex with the transferrin receptor, which persists throughout the transferrin-to-cell cycle of iron uptake, the potential is raised by more than 200 mV. Reductive release of iron from transferrin, which binds Fe2+ very weakly, is therefore physiologically feasible, a further indication that the transferrin receptor is more than a passive conveyor of transferrin and its iron. |
---|---|
ISSN: | 0006-2960 1520-4995 |
DOI: | 10.1021/bi0353631 |