Loading…

The control of memory-guided reaching movements in peripersonal space

The goal of the present investigation was to explore the putative contributions of feedforward- and feedback-based processes in the control of memory-guided reaching movements. Participants (N = 4) completed an extensive number of reaching movements (2700) to 3 midline targets (20, 30, 40 cm) in 6 v...

Full description

Saved in:
Bibliographic Details
Published in:Motor control 2004-01, Vol.8 (1), p.76-106
Main Authors: Heath, Matthew, Westwood, David A, Binsted, Gordon
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The goal of the present investigation was to explore the putative contributions of feedforward- and feedback-based processes in the control of memory-guided reaching movements. Participants (N = 4) completed an extensive number of reaching movements (2700) to 3 midline targets (20, 30, 40 cm) in 6 visual conditions: full-vision, open-loop, and four memory-guided conditions (0, 200, 400, and 600 ms of delay). To infer limb control, we used a regression technique to examine the within-trial correspondence between the spatial position of the limb at peak acceleration, peak velocity, peak deceleration, and the ultimate movement endpoint. A high degree of within-trial correspondence would suggest that the final position of the limb was largely specified prior to movement onset and not adjusted during the action (i.e., feedforward control); conversely, a low degree of within-trial correspondence would suggest that movements were modified during the reaching trajectory (i.e., feedback control). Full-vision reaches were found to be more accurate and less variable than open-loop and memory-guided reaches. Moreover, full-vision reaches demonstrated only modest within-trial correspondence between the spatial position of the limb at each kinematic marker and the ultimate movement endpoint, suggesting that reaching accuracy was achieved by adjusting the limb trajectory throughout the course of the action. Open-loop and memory-guided movements exhibited strong within-trial correspondence between final limb position and the position of the limb at peak velocity and peak deceleration. This strong correspondence indicates that the final position of the limb was largely determined by processes that occurred before the reach was initiated; errors in the planning process were not corrected during the course of the action. Thus, and contrary to our previous findings in a video-based aiming task, it appears that stored target information is not extensively (if at all) used to modify the trajectory of reaching movements to remembered targets in peripersonal space.
ISSN:1087-1640
1543-2696
DOI:10.1123/mcj.8.1.76