Loading…
Suppression of Tumorigenicity in Somatic Cell Hybrids. II. Human Chromosomes Implicated as Suppressors of Tumorigenicity in Hybrids With Chinese Hamster Ovary Cells
Nontumorigenic diploid human cells were fused with tumorigenic Chinese hamster ovary cells (CHO), and the hybrids were tested for tumorigenicity to determine if specific human chromosomes are associated with suppression of tumorigenicity in cell hybrids. Chromosome complements of cells of 62 nontumo...
Saved in:
Published in: | JNCI : Journal of the National Cancer Institute 1983-09, Vol.71 (3), p.559-569 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Nontumorigenic diploid human cells were fused with tumorigenic Chinese hamster ovary cells (CHO), and the hybrids were tested for tumorigenicity to determine if specific human chromosomes are associated with suppression of tumorigenicity in cell hybrids. Chromosome complements of cells of 62 nontumorigenic and 45 tumorigenic hybrids (divided into those of low, medium, and high tumorigenicity) as well as 44 tumors derived from the tumorigenic hybrids were determined by both analysis of banded chromosomes and assays of gene markers. Although no single human chromosome was consistently associated with the suppressed phenotype, chromosome 2 was never found in tumor cells, and chromosomes 9, 10, 11, and 17 were found at very low incidences in tumor cells, which suggested that they carry tumorigenicity suppressor information. Since not all suppressed hybrids contained these chromosomes, it is likely that they suppressed tumorigenicity only in combination with each other or other chromosomes. Nine chromosomes in 12 pairwise combinations of nonhomologous chromosomes were not found in tumor cells and were found at an incidence of 5% or less in hybrids of both medium and high tumorigenicity. Other experiments implicated 11 of these combinations involving only 8 chromosomes (chromosomes 4, 7, 8, 9, 10, 11, 13, and 17) as those primarily involved in suppression. Whether chromosome 2 requires another chromosome to effect suppression could not be determined. Further evaluations of the implicated suppressors, including selection of tumorigenic segregants from a panel of suppressed hybrids, again implicated the same chromosomes and their combinations in suppression. Oncogenes have been mapped to many of these chromosomes, and they are frequently involved in tumor-type-specific numerical or structural abnormalities in human neoplasias. The combined evidence suggests that specific human chromosomes of a normal cell carry genes that can regulate several cell phenotypes necessary for the expression of tumorigenicity. |
---|---|
ISSN: | 0027-8874 1460-2105 |
DOI: | 10.1093/jnci/71.3.559 |