Loading…
Demonstration that CFTR is a Chloride Channel by Alteration of its Anion Selectivity
Expression of the cystic fibrosis transmembrane conductance regulator (CFTR) generates adenosine 3′,5′-monophosphate (cAMP)-regulated chloride channels, indicating that CFTR is either a chloride channel or a chloride channel regulator. To distinguish between these possibilities, basic amino acids in...
Saved in:
Published in: | Science (American Association for the Advancement of Science) 1991-07, Vol.253 (5016), p.202-205 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Expression of the cystic fibrosis transmembrane conductance regulator (CFTR) generates adenosine 3′,5′-monophosphate (cAMP)-regulated chloride channels, indicating that CFTR is either a chloride channel or a chloride channel regulator. To distinguish between these possibilities, basic amino acids in the putative transmembrane domains were mutated. The sequence of anion selectivity of cAMP-regulated channels in cells containing either endogenous or recombinant CFTR was bromide > chloride > iodide > fluoride. Mutation of the lysines at positions 95 or 335 to acidic amino acids converted the selectivity sequence to iodide > bromide > chloride > fluoride. These data indicate that CFTR is a cAMP-regulated chloride channel and that lysines 95 and 335 determine anion selectivity. |
---|---|
ISSN: | 0036-8075 1095-9203 |
DOI: | 10.1126/science.1712984 |