Loading…
Purification of a protein phosphatase from Acanthamoeba that dephosphorylates and activates myosin II
The actin-activated ATPase activity of myosin II from Acanthamoeba castellanii is inhibited by phosphorylation of 3 serine residues near the carboxyl end of the heavy chain of the molecule. We have purified a protein phosphatase from Acanthamoeba using myosin II as a substrate. This phosphatase has...
Saved in:
Published in: | The Journal of biological chemistry 1983-12, Vol.258 (23), p.14570-14575 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The actin-activated ATPase activity of myosin II from Acanthamoeba castellanii is inhibited by phosphorylation of 3 serine residues near the carboxyl end of the heavy chain of the molecule. We have purified a protein phosphatase from Acanthamoeba using myosin II as a substrate. This phosphatase has a molecular weight of 39,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and an isoelectric point in urea of 5.2. The enzyme also is active against other phosphoserine protein substrates such as turkey gizzard smooth muscle myosin light chain, but not against a synthetic phosphotyrosine protein substrate. It does not hydrolyze ATP or p-nitrophenol phosphate. No effector has been found to increase substantially the activity of the enzyme as isolated, but it is inhibited by ATP, pyrophosphate, and NaF. This inhibition is reduced in the presence of MnCl2. The Mg2+-dependent actin-activated ATPase of myosin II is activated by dephosphorylation of phosphorylated myosin II by the phosphatase. Its broad substrate specificity, molecular weight, and response to protein phosphatase inhibitors suggest that the Acanthamoeba protein phosphatase is a type 2A phosphatase (Cohen, P. (1982) Nature (Lond.) 206, 613-620). |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1016/S0021-9258(17)43901-9 |