Loading…
Evaluation of oxidative stress and inflammation in long term Brucella melitensis infection
The Brucella genus is able to cause chronic infection in a wide range of mammals including humans. Oxidative events, lipid peroxidation and inflammatory response against Brucella infection have not yet been well elucidated in vivo. We have investigated oxidative/antioxidative status and nitric oxide...
Saved in:
Published in: | Molecular and cellular biochemistry 2006-12, Vol.293 (1-2), p.203-209 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Brucella genus is able to cause chronic infection in a wide range of mammals including humans. Oxidative events, lipid peroxidation and inflammatory response against Brucella infection have not yet been well elucidated in vivo. We have investigated oxidative/antioxidative status and nitric oxide production in plasma, brain, liver and spleen during a 60 day period of B. melitensis infection in a rat model. In addition, inducible nitric oxide synthase (iNOS), IL-10, IL-12, IFN-gamma and TNF-alpha mRNA transcriptions were analyzed by semiquantitative reverse transcriptase PCR (RT-PCR) in brain samples. Animals were infected with B. melitensis and sacrificed at 7th, 15th, 30th, 45th and 60th day of post-inoculation. Malondialdehyde (MDA), as an indicator of lipid peroxidation, and nitric oxide (NO) concentrations were significantly increased after Brucella inoculation and began to decline to basal levels from 45th day in plasma, liver and spleen. However, iNOS transcription was not induced during the infection period in brains. In contrast, MDA level was increased in brain during the late phase of infection without any change in NO production. The infection did not alter the antioxidant enzyme activities in the tissues; although significantly increased catalase activity was observed between days 30 and 45 in the liver. Transcription analyses demonstrated that IL-10, IL-12 and IFN-gamma mRNA level were not induced in the brain. Only TNF-alpha mRNA was weakly up-regulated in brain 30 days after pathogen inoculation. The results obtained in this study demonstrate that B. melitensis induces lipid peroxidation and NO production in the liver and spleen in the early days of infection, but that these levels subsequently decline. Moreover, Brucella does not appear to induce antioxidant enzyme activities and inflammation during two months of infection. However, the pathogen does stimulate cerebral lipid peroxidation in the late phase of infection without causing significant inflammation. |
---|---|
ISSN: | 0300-8177 1573-4919 |
DOI: | 10.1007/s11010-006-9243-2 |