Loading…

Carbamyl phosphate: glucose phosphotransferase and glucose-6-phosphate phosphohydrolase of nuclear membrane. Interrelationships between membrane integrity, enzymic latency, and catalytic behavior

The presence of carbamyl-phosphate:glucose phosphotransferase in liver nuclei of five species of mammals and birds is demonstrated. The activity is confined to nuclear membranes and is due exclusively to multifunctional glucose-6-phosphatase-phosphotransferase (D-glucose-6-phosphate phosphohydrolase...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 1975-05, Vol.250 (9), p.3552-3559
Main Authors: Gunderson, H M, Nordlie, R C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The presence of carbamyl-phosphate:glucose phosphotransferase in liver nuclei of five species of mammals and birds is demonstrated. The activity is confined to nuclear membranes and is due exclusively to multifunctional glucose-6-phosphatase-phosphotransferase (D-glucose-6-phosphate phosphohydrolase; EC 3.1.3.9). The nuclear enzyme constitutes approximately 16 to 19 percent of total hepatic glucose-6-phosphatase-phosphotransferase. Carbamyl-phosphate:glucose phosphotransferase and glucose-6-P phosphohydrolase activities of membrane of chicken liver nuclei are shown to be catalytically identical with the maximally activated microsomal enzyme. A correspondence is seen in two-substrate kinetic double reciprocal plots, K-m or apparent K-m values for the various substrates, K-i values for the competitive inhibitors P-i and ATP, and pH-activity profiles. Comparative studies were carried out with various intact, disrupted, and detergent-dispersed membranous preparations by a combination of enzyme kinetic and electron microscopic techniques. It is concluded that (a) intimate interrelationships exists between catalytic behavior of this enzyme and morphological integrity of membranes of which the enzyme is a part; (b) activities of the enzyme of nuclear membrane appear quite available for physiological phosphorylative functions; and (c) interrelationships between membrane morphology and catalytic behavior of this membrane-bound enzyme may well be involved in the bioregulation of this complex, multifunctional enzyme system.
ISSN:0021-9258
1083-351X
DOI:10.1016/S0021-9258(19)41550-0