Loading…

Countercurrent extraction of sparingly soluble gases for membrane introduction mass spectrometry

Membrane introduction mass spectrometry has been applied to inert gas measurements in blood and tissue, but gases with low blood solubility are associated with reduced sensitivity. Countercurrent extraction of inert gases from a blood sample into a water carrier phase has the potential to extract mo...

Full description

Saved in:
Bibliographic Details
Published in:Annals of biomedical engineering 1997-09, Vol.25 (5), p.858-869
Main Authors: BAUMGARDNER, J. E, NEUFELD, G. R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c370t-a6ca2f07d874494837ff2c8f5448d9c271b332e44b7b45956176ac61a8ffb1793
cites cdi_FETCH-LOGICAL-c370t-a6ca2f07d874494837ff2c8f5448d9c271b332e44b7b45956176ac61a8ffb1793
container_end_page 869
container_issue 5
container_start_page 858
container_title Annals of biomedical engineering
container_volume 25
creator BAUMGARDNER, J. E
NEUFELD, G. R
description Membrane introduction mass spectrometry has been applied to inert gas measurements in blood and tissue, but gases with low blood solubility are associated with reduced sensitivity. Countercurrent extraction of inert gases from a blood sample into a water carrier phase has the potential to extract most of the gas sample while avoiding dependence of signal on blood solubility. We present the design of a membrane countercurrent exchange (CCE) device coupled with a conventional direct insertion membrane probe to measure partial pressure of low solubility inert gases in aqueous samples. A mathematical model of steady-state membrane CCB predicts that countercurrent extraction with appropriate selection of carrier and sample flow rates can provide a mass spectrometer signal nearly independent of variations in solubility over a specified range, while retaining a linear response to changes in gas partial pressure over several orders of magnitude. Experimental data are presented for sulfur hexafluoride and krypton in water samples. Optimal performance is dependent on adequate equilibration between the sample and carrier streams, and the large resistance to diffusion in the aqueous phase for insoluble gases presents a substantial challenge to the application of this principle.
doi_str_mv 10.1007/BF02684170
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_831175173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>79290798</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-a6ca2f07d874494837ff2c8f5448d9c271b332e44b7b45956176ac61a8ffb1793</originalsourceid><addsrcrecordid>eNp90c9LwzAUB_Agis7pxbtQRBSEatL8eMlRh1NB8KLnmmaJVNpmJi24_96MlQkePCXkfd4jyRehE4KvCcZwczfHhZCMAN5BE8KB5kpIsYsmGCucCyXYATqM8RNjQiTl-2hf0fUeT9D7zA9db4MZQrBdn9nvPmjT177LvMviUoe6-2hWWfTNUDU2-9DRxsz5kLW2rYLubFZ3ffCLYdPU6hhTmzXprLV9WB2hPaebaI_HdYre5vevs8f8-eXhaXb7nBsKuM-1MLpwGBYSGFNMUnCuMNJxxuRCmQJIRWlhGaugYlxxQUBoI4iWzlUEFJ2iy83cZfBfg4192dbR2KZJV_RDLCUlBDgBmuTFvxJUoTAomeDZH_jph9ClV5TABXCsijW62iATfIzBunIZ6laHVUlwuU6n_E0n4dNx4lC1drGlYxypfj7WdTS6cel_TR23rJApPsnpD4-Clrs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>756750928</pqid></control><display><type>article</type><title>Countercurrent extraction of sparingly soluble gases for membrane introduction mass spectrometry</title><source>Springer Nature</source><creator>BAUMGARDNER, J. E ; NEUFELD, G. R</creator><creatorcontrib>BAUMGARDNER, J. E ; NEUFELD, G. R</creatorcontrib><description>Membrane introduction mass spectrometry has been applied to inert gas measurements in blood and tissue, but gases with low blood solubility are associated with reduced sensitivity. Countercurrent extraction of inert gases from a blood sample into a water carrier phase has the potential to extract most of the gas sample while avoiding dependence of signal on blood solubility. We present the design of a membrane countercurrent exchange (CCE) device coupled with a conventional direct insertion membrane probe to measure partial pressure of low solubility inert gases in aqueous samples. A mathematical model of steady-state membrane CCB predicts that countercurrent extraction with appropriate selection of carrier and sample flow rates can provide a mass spectrometer signal nearly independent of variations in solubility over a specified range, while retaining a linear response to changes in gas partial pressure over several orders of magnitude. Experimental data are presented for sulfur hexafluoride and krypton in water samples. Optimal performance is dependent on adequate equilibration between the sample and carrier streams, and the large resistance to diffusion in the aqueous phase for insoluble gases presents a substantial challenge to the application of this principle.</description><identifier>ISSN: 0090-6964</identifier><identifier>EISSN: 1573-9686</identifier><identifier>DOI: 10.1007/BF02684170</identifier><identifier>PMID: 9300110</identifier><identifier>CODEN: ABMECF</identifier><language>eng</language><publisher>New York, NY: Springer</publisher><subject>Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy ; Animals ; Biological and medical sciences ; Biomedical Engineering ; Blood ; Countercurrent Distribution ; Diffusion ; Emergency and intensive care: techniques, logistics ; Gases ; Humans ; Intensive care medicine ; Krypton ; Krypton - analysis ; Krypton - blood ; Krypton - isolation &amp; purification ; Mass spectrometry ; Mass Spectrometry - methods ; Medical sciences ; Membranes ; Models, Theoretical ; Monitoring ; Noble Gases - analysis ; Noble Gases - blood ; Noble Gases - isolation &amp; purification ; Solubility ; Sulfur ; Sulfur Hexafluoride - analysis ; Sulfur Hexafluoride - blood ; Sulfur Hexafluoride - isolation &amp; purification ; Water analysis ; Water sampling</subject><ispartof>Annals of biomedical engineering, 1997-09, Vol.25 (5), p.858-869</ispartof><rights>1997 INIST-CNRS</rights><rights>Biomedical Engineering Society 1997</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-a6ca2f07d874494837ff2c8f5448d9c271b332e44b7b45956176ac61a8ffb1793</citedby><cites>FETCH-LOGICAL-c370t-a6ca2f07d874494837ff2c8f5448d9c271b332e44b7b45956176ac61a8ffb1793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2818385$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9300110$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>BAUMGARDNER, J. E</creatorcontrib><creatorcontrib>NEUFELD, G. R</creatorcontrib><title>Countercurrent extraction of sparingly soluble gases for membrane introduction mass spectrometry</title><title>Annals of biomedical engineering</title><addtitle>Ann Biomed Eng</addtitle><description>Membrane introduction mass spectrometry has been applied to inert gas measurements in blood and tissue, but gases with low blood solubility are associated with reduced sensitivity. Countercurrent extraction of inert gases from a blood sample into a water carrier phase has the potential to extract most of the gas sample while avoiding dependence of signal on blood solubility. We present the design of a membrane countercurrent exchange (CCE) device coupled with a conventional direct insertion membrane probe to measure partial pressure of low solubility inert gases in aqueous samples. A mathematical model of steady-state membrane CCB predicts that countercurrent extraction with appropriate selection of carrier and sample flow rates can provide a mass spectrometer signal nearly independent of variations in solubility over a specified range, while retaining a linear response to changes in gas partial pressure over several orders of magnitude. Experimental data are presented for sulfur hexafluoride and krypton in water samples. Optimal performance is dependent on adequate equilibration between the sample and carrier streams, and the large resistance to diffusion in the aqueous phase for insoluble gases presents a substantial challenge to the application of this principle.</description><subject>Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Biomedical Engineering</subject><subject>Blood</subject><subject>Countercurrent Distribution</subject><subject>Diffusion</subject><subject>Emergency and intensive care: techniques, logistics</subject><subject>Gases</subject><subject>Humans</subject><subject>Intensive care medicine</subject><subject>Krypton</subject><subject>Krypton - analysis</subject><subject>Krypton - blood</subject><subject>Krypton - isolation &amp; purification</subject><subject>Mass spectrometry</subject><subject>Mass Spectrometry - methods</subject><subject>Medical sciences</subject><subject>Membranes</subject><subject>Models, Theoretical</subject><subject>Monitoring</subject><subject>Noble Gases - analysis</subject><subject>Noble Gases - blood</subject><subject>Noble Gases - isolation &amp; purification</subject><subject>Solubility</subject><subject>Sulfur</subject><subject>Sulfur Hexafluoride - analysis</subject><subject>Sulfur Hexafluoride - blood</subject><subject>Sulfur Hexafluoride - isolation &amp; purification</subject><subject>Water analysis</subject><subject>Water sampling</subject><issn>0090-6964</issn><issn>1573-9686</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNp90c9LwzAUB_Agis7pxbtQRBSEatL8eMlRh1NB8KLnmmaJVNpmJi24_96MlQkePCXkfd4jyRehE4KvCcZwczfHhZCMAN5BE8KB5kpIsYsmGCucCyXYATqM8RNjQiTl-2hf0fUeT9D7zA9db4MZQrBdn9nvPmjT177LvMviUoe6-2hWWfTNUDU2-9DRxsz5kLW2rYLubFZ3ffCLYdPU6hhTmzXprLV9WB2hPaebaI_HdYre5vevs8f8-eXhaXb7nBsKuM-1MLpwGBYSGFNMUnCuMNJxxuRCmQJIRWlhGaugYlxxQUBoI4iWzlUEFJ2iy83cZfBfg4192dbR2KZJV_RDLCUlBDgBmuTFvxJUoTAomeDZH_jph9ClV5TABXCsijW62iATfIzBunIZ6laHVUlwuU6n_E0n4dNx4lC1drGlYxypfj7WdTS6cel_TR23rJApPsnpD4-Clrs</recordid><startdate>19970901</startdate><enddate>19970901</enddate><creator>BAUMGARDNER, J. E</creator><creator>NEUFELD, G. R</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope></search><sort><creationdate>19970901</creationdate><title>Countercurrent extraction of sparingly soluble gases for membrane introduction mass spectrometry</title><author>BAUMGARDNER, J. E ; NEUFELD, G. R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-a6ca2f07d874494837ff2c8f5448d9c271b332e44b7b45956176ac61a8ffb1793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Biomedical Engineering</topic><topic>Blood</topic><topic>Countercurrent Distribution</topic><topic>Diffusion</topic><topic>Emergency and intensive care: techniques, logistics</topic><topic>Gases</topic><topic>Humans</topic><topic>Intensive care medicine</topic><topic>Krypton</topic><topic>Krypton - analysis</topic><topic>Krypton - blood</topic><topic>Krypton - isolation &amp; purification</topic><topic>Mass spectrometry</topic><topic>Mass Spectrometry - methods</topic><topic>Medical sciences</topic><topic>Membranes</topic><topic>Models, Theoretical</topic><topic>Monitoring</topic><topic>Noble Gases - analysis</topic><topic>Noble Gases - blood</topic><topic>Noble Gases - isolation &amp; purification</topic><topic>Solubility</topic><topic>Sulfur</topic><topic>Sulfur Hexafluoride - analysis</topic><topic>Sulfur Hexafluoride - blood</topic><topic>Sulfur Hexafluoride - isolation &amp; purification</topic><topic>Water analysis</topic><topic>Water sampling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BAUMGARDNER, J. E</creatorcontrib><creatorcontrib>NEUFELD, G. R</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Annals of biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BAUMGARDNER, J. E</au><au>NEUFELD, G. R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Countercurrent extraction of sparingly soluble gases for membrane introduction mass spectrometry</atitle><jtitle>Annals of biomedical engineering</jtitle><addtitle>Ann Biomed Eng</addtitle><date>1997-09-01</date><risdate>1997</risdate><volume>25</volume><issue>5</issue><spage>858</spage><epage>869</epage><pages>858-869</pages><issn>0090-6964</issn><eissn>1573-9686</eissn><coden>ABMECF</coden><abstract>Membrane introduction mass spectrometry has been applied to inert gas measurements in blood and tissue, but gases with low blood solubility are associated with reduced sensitivity. Countercurrent extraction of inert gases from a blood sample into a water carrier phase has the potential to extract most of the gas sample while avoiding dependence of signal on blood solubility. We present the design of a membrane countercurrent exchange (CCE) device coupled with a conventional direct insertion membrane probe to measure partial pressure of low solubility inert gases in aqueous samples. A mathematical model of steady-state membrane CCB predicts that countercurrent extraction with appropriate selection of carrier and sample flow rates can provide a mass spectrometer signal nearly independent of variations in solubility over a specified range, while retaining a linear response to changes in gas partial pressure over several orders of magnitude. Experimental data are presented for sulfur hexafluoride and krypton in water samples. Optimal performance is dependent on adequate equilibration between the sample and carrier streams, and the large resistance to diffusion in the aqueous phase for insoluble gases presents a substantial challenge to the application of this principle.</abstract><cop>New York, NY</cop><pub>Springer</pub><pmid>9300110</pmid><doi>10.1007/BF02684170</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0090-6964
ispartof Annals of biomedical engineering, 1997-09, Vol.25 (5), p.858-869
issn 0090-6964
1573-9686
language eng
recordid cdi_proquest_miscellaneous_831175173
source Springer Nature
subjects Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy
Animals
Biological and medical sciences
Biomedical Engineering
Blood
Countercurrent Distribution
Diffusion
Emergency and intensive care: techniques, logistics
Gases
Humans
Intensive care medicine
Krypton
Krypton - analysis
Krypton - blood
Krypton - isolation & purification
Mass spectrometry
Mass Spectrometry - methods
Medical sciences
Membranes
Models, Theoretical
Monitoring
Noble Gases - analysis
Noble Gases - blood
Noble Gases - isolation & purification
Solubility
Sulfur
Sulfur Hexafluoride - analysis
Sulfur Hexafluoride - blood
Sulfur Hexafluoride - isolation & purification
Water analysis
Water sampling
title Countercurrent extraction of sparingly soluble gases for membrane introduction mass spectrometry
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A24%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Countercurrent%20extraction%20of%20sparingly%20soluble%20gases%20for%20membrane%20introduction%20mass%20spectrometry&rft.jtitle=Annals%20of%20biomedical%20engineering&rft.au=BAUMGARDNER,%20J.%20E&rft.date=1997-09-01&rft.volume=25&rft.issue=5&rft.spage=858&rft.epage=869&rft.pages=858-869&rft.issn=0090-6964&rft.eissn=1573-9686&rft.coden=ABMECF&rft_id=info:doi/10.1007/BF02684170&rft_dat=%3Cproquest_cross%3E79290798%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c370t-a6ca2f07d874494837ff2c8f5448d9c271b332e44b7b45956176ac61a8ffb1793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=756750928&rft_id=info:pmid/9300110&rfr_iscdi=true