Loading…
Countercurrent extraction of sparingly soluble gases for membrane introduction mass spectrometry
Membrane introduction mass spectrometry has been applied to inert gas measurements in blood and tissue, but gases with low blood solubility are associated with reduced sensitivity. Countercurrent extraction of inert gases from a blood sample into a water carrier phase has the potential to extract mo...
Saved in:
Published in: | Annals of biomedical engineering 1997-09, Vol.25 (5), p.858-869 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c370t-a6ca2f07d874494837ff2c8f5448d9c271b332e44b7b45956176ac61a8ffb1793 |
---|---|
cites | cdi_FETCH-LOGICAL-c370t-a6ca2f07d874494837ff2c8f5448d9c271b332e44b7b45956176ac61a8ffb1793 |
container_end_page | 869 |
container_issue | 5 |
container_start_page | 858 |
container_title | Annals of biomedical engineering |
container_volume | 25 |
creator | BAUMGARDNER, J. E NEUFELD, G. R |
description | Membrane introduction mass spectrometry has been applied to inert gas measurements in blood and tissue, but gases with low blood solubility are associated with reduced sensitivity. Countercurrent extraction of inert gases from a blood sample into a water carrier phase has the potential to extract most of the gas sample while avoiding dependence of signal on blood solubility. We present the design of a membrane countercurrent exchange (CCE) device coupled with a conventional direct insertion membrane probe to measure partial pressure of low solubility inert gases in aqueous samples. A mathematical model of steady-state membrane CCB predicts that countercurrent extraction with appropriate selection of carrier and sample flow rates can provide a mass spectrometer signal nearly independent of variations in solubility over a specified range, while retaining a linear response to changes in gas partial pressure over several orders of magnitude. Experimental data are presented for sulfur hexafluoride and krypton in water samples. Optimal performance is dependent on adequate equilibration between the sample and carrier streams, and the large resistance to diffusion in the aqueous phase for insoluble gases presents a substantial challenge to the application of this principle. |
doi_str_mv | 10.1007/BF02684170 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_831175173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>79290798</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-a6ca2f07d874494837ff2c8f5448d9c271b332e44b7b45956176ac61a8ffb1793</originalsourceid><addsrcrecordid>eNp90c9LwzAUB_Agis7pxbtQRBSEatL8eMlRh1NB8KLnmmaJVNpmJi24_96MlQkePCXkfd4jyRehE4KvCcZwczfHhZCMAN5BE8KB5kpIsYsmGCucCyXYATqM8RNjQiTl-2hf0fUeT9D7zA9db4MZQrBdn9nvPmjT177LvMviUoe6-2hWWfTNUDU2-9DRxsz5kLW2rYLubFZ3ffCLYdPU6hhTmzXprLV9WB2hPaebaI_HdYre5vevs8f8-eXhaXb7nBsKuM-1MLpwGBYSGFNMUnCuMNJxxuRCmQJIRWlhGaugYlxxQUBoI4iWzlUEFJ2iy83cZfBfg4192dbR2KZJV_RDLCUlBDgBmuTFvxJUoTAomeDZH_jph9ClV5TABXCsijW62iATfIzBunIZ6laHVUlwuU6n_E0n4dNx4lC1drGlYxypfj7WdTS6cel_TR23rJApPsnpD4-Clrs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>756750928</pqid></control><display><type>article</type><title>Countercurrent extraction of sparingly soluble gases for membrane introduction mass spectrometry</title><source>Springer Nature</source><creator>BAUMGARDNER, J. E ; NEUFELD, G. R</creator><creatorcontrib>BAUMGARDNER, J. E ; NEUFELD, G. R</creatorcontrib><description>Membrane introduction mass spectrometry has been applied to inert gas measurements in blood and tissue, but gases with low blood solubility are associated with reduced sensitivity. Countercurrent extraction of inert gases from a blood sample into a water carrier phase has the potential to extract most of the gas sample while avoiding dependence of signal on blood solubility. We present the design of a membrane countercurrent exchange (CCE) device coupled with a conventional direct insertion membrane probe to measure partial pressure of low solubility inert gases in aqueous samples. A mathematical model of steady-state membrane CCB predicts that countercurrent extraction with appropriate selection of carrier and sample flow rates can provide a mass spectrometer signal nearly independent of variations in solubility over a specified range, while retaining a linear response to changes in gas partial pressure over several orders of magnitude. Experimental data are presented for sulfur hexafluoride and krypton in water samples. Optimal performance is dependent on adequate equilibration between the sample and carrier streams, and the large resistance to diffusion in the aqueous phase for insoluble gases presents a substantial challenge to the application of this principle.</description><identifier>ISSN: 0090-6964</identifier><identifier>EISSN: 1573-9686</identifier><identifier>DOI: 10.1007/BF02684170</identifier><identifier>PMID: 9300110</identifier><identifier>CODEN: ABMECF</identifier><language>eng</language><publisher>New York, NY: Springer</publisher><subject>Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy ; Animals ; Biological and medical sciences ; Biomedical Engineering ; Blood ; Countercurrent Distribution ; Diffusion ; Emergency and intensive care: techniques, logistics ; Gases ; Humans ; Intensive care medicine ; Krypton ; Krypton - analysis ; Krypton - blood ; Krypton - isolation & purification ; Mass spectrometry ; Mass Spectrometry - methods ; Medical sciences ; Membranes ; Models, Theoretical ; Monitoring ; Noble Gases - analysis ; Noble Gases - blood ; Noble Gases - isolation & purification ; Solubility ; Sulfur ; Sulfur Hexafluoride - analysis ; Sulfur Hexafluoride - blood ; Sulfur Hexafluoride - isolation & purification ; Water analysis ; Water sampling</subject><ispartof>Annals of biomedical engineering, 1997-09, Vol.25 (5), p.858-869</ispartof><rights>1997 INIST-CNRS</rights><rights>Biomedical Engineering Society 1997</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-a6ca2f07d874494837ff2c8f5448d9c271b332e44b7b45956176ac61a8ffb1793</citedby><cites>FETCH-LOGICAL-c370t-a6ca2f07d874494837ff2c8f5448d9c271b332e44b7b45956176ac61a8ffb1793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2818385$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9300110$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>BAUMGARDNER, J. E</creatorcontrib><creatorcontrib>NEUFELD, G. R</creatorcontrib><title>Countercurrent extraction of sparingly soluble gases for membrane introduction mass spectrometry</title><title>Annals of biomedical engineering</title><addtitle>Ann Biomed Eng</addtitle><description>Membrane introduction mass spectrometry has been applied to inert gas measurements in blood and tissue, but gases with low blood solubility are associated with reduced sensitivity. Countercurrent extraction of inert gases from a blood sample into a water carrier phase has the potential to extract most of the gas sample while avoiding dependence of signal on blood solubility. We present the design of a membrane countercurrent exchange (CCE) device coupled with a conventional direct insertion membrane probe to measure partial pressure of low solubility inert gases in aqueous samples. A mathematical model of steady-state membrane CCB predicts that countercurrent extraction with appropriate selection of carrier and sample flow rates can provide a mass spectrometer signal nearly independent of variations in solubility over a specified range, while retaining a linear response to changes in gas partial pressure over several orders of magnitude. Experimental data are presented for sulfur hexafluoride and krypton in water samples. Optimal performance is dependent on adequate equilibration between the sample and carrier streams, and the large resistance to diffusion in the aqueous phase for insoluble gases presents a substantial challenge to the application of this principle.</description><subject>Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Biomedical Engineering</subject><subject>Blood</subject><subject>Countercurrent Distribution</subject><subject>Diffusion</subject><subject>Emergency and intensive care: techniques, logistics</subject><subject>Gases</subject><subject>Humans</subject><subject>Intensive care medicine</subject><subject>Krypton</subject><subject>Krypton - analysis</subject><subject>Krypton - blood</subject><subject>Krypton - isolation & purification</subject><subject>Mass spectrometry</subject><subject>Mass Spectrometry - methods</subject><subject>Medical sciences</subject><subject>Membranes</subject><subject>Models, Theoretical</subject><subject>Monitoring</subject><subject>Noble Gases - analysis</subject><subject>Noble Gases - blood</subject><subject>Noble Gases - isolation & purification</subject><subject>Solubility</subject><subject>Sulfur</subject><subject>Sulfur Hexafluoride - analysis</subject><subject>Sulfur Hexafluoride - blood</subject><subject>Sulfur Hexafluoride - isolation & purification</subject><subject>Water analysis</subject><subject>Water sampling</subject><issn>0090-6964</issn><issn>1573-9686</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNp90c9LwzAUB_Agis7pxbtQRBSEatL8eMlRh1NB8KLnmmaJVNpmJi24_96MlQkePCXkfd4jyRehE4KvCcZwczfHhZCMAN5BE8KB5kpIsYsmGCucCyXYATqM8RNjQiTl-2hf0fUeT9D7zA9db4MZQrBdn9nvPmjT177LvMviUoe6-2hWWfTNUDU2-9DRxsz5kLW2rYLubFZ3ffCLYdPU6hhTmzXprLV9WB2hPaebaI_HdYre5vevs8f8-eXhaXb7nBsKuM-1MLpwGBYSGFNMUnCuMNJxxuRCmQJIRWlhGaugYlxxQUBoI4iWzlUEFJ2iy83cZfBfg4192dbR2KZJV_RDLCUlBDgBmuTFvxJUoTAomeDZH_jph9ClV5TABXCsijW62iATfIzBunIZ6laHVUlwuU6n_E0n4dNx4lC1drGlYxypfj7WdTS6cel_TR23rJApPsnpD4-Clrs</recordid><startdate>19970901</startdate><enddate>19970901</enddate><creator>BAUMGARDNER, J. E</creator><creator>NEUFELD, G. R</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope></search><sort><creationdate>19970901</creationdate><title>Countercurrent extraction of sparingly soluble gases for membrane introduction mass spectrometry</title><author>BAUMGARDNER, J. E ; NEUFELD, G. R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-a6ca2f07d874494837ff2c8f5448d9c271b332e44b7b45956176ac61a8ffb1793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Biomedical Engineering</topic><topic>Blood</topic><topic>Countercurrent Distribution</topic><topic>Diffusion</topic><topic>Emergency and intensive care: techniques, logistics</topic><topic>Gases</topic><topic>Humans</topic><topic>Intensive care medicine</topic><topic>Krypton</topic><topic>Krypton - analysis</topic><topic>Krypton - blood</topic><topic>Krypton - isolation & purification</topic><topic>Mass spectrometry</topic><topic>Mass Spectrometry - methods</topic><topic>Medical sciences</topic><topic>Membranes</topic><topic>Models, Theoretical</topic><topic>Monitoring</topic><topic>Noble Gases - analysis</topic><topic>Noble Gases - blood</topic><topic>Noble Gases - isolation & purification</topic><topic>Solubility</topic><topic>Sulfur</topic><topic>Sulfur Hexafluoride - analysis</topic><topic>Sulfur Hexafluoride - blood</topic><topic>Sulfur Hexafluoride - isolation & purification</topic><topic>Water analysis</topic><topic>Water sampling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BAUMGARDNER, J. E</creatorcontrib><creatorcontrib>NEUFELD, G. R</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Annals of biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BAUMGARDNER, J. E</au><au>NEUFELD, G. R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Countercurrent extraction of sparingly soluble gases for membrane introduction mass spectrometry</atitle><jtitle>Annals of biomedical engineering</jtitle><addtitle>Ann Biomed Eng</addtitle><date>1997-09-01</date><risdate>1997</risdate><volume>25</volume><issue>5</issue><spage>858</spage><epage>869</epage><pages>858-869</pages><issn>0090-6964</issn><eissn>1573-9686</eissn><coden>ABMECF</coden><abstract>Membrane introduction mass spectrometry has been applied to inert gas measurements in blood and tissue, but gases with low blood solubility are associated with reduced sensitivity. Countercurrent extraction of inert gases from a blood sample into a water carrier phase has the potential to extract most of the gas sample while avoiding dependence of signal on blood solubility. We present the design of a membrane countercurrent exchange (CCE) device coupled with a conventional direct insertion membrane probe to measure partial pressure of low solubility inert gases in aqueous samples. A mathematical model of steady-state membrane CCB predicts that countercurrent extraction with appropriate selection of carrier and sample flow rates can provide a mass spectrometer signal nearly independent of variations in solubility over a specified range, while retaining a linear response to changes in gas partial pressure over several orders of magnitude. Experimental data are presented for sulfur hexafluoride and krypton in water samples. Optimal performance is dependent on adequate equilibration between the sample and carrier streams, and the large resistance to diffusion in the aqueous phase for insoluble gases presents a substantial challenge to the application of this principle.</abstract><cop>New York, NY</cop><pub>Springer</pub><pmid>9300110</pmid><doi>10.1007/BF02684170</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0090-6964 |
ispartof | Annals of biomedical engineering, 1997-09, Vol.25 (5), p.858-869 |
issn | 0090-6964 1573-9686 |
language | eng |
recordid | cdi_proquest_miscellaneous_831175173 |
source | Springer Nature |
subjects | Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy Animals Biological and medical sciences Biomedical Engineering Blood Countercurrent Distribution Diffusion Emergency and intensive care: techniques, logistics Gases Humans Intensive care medicine Krypton Krypton - analysis Krypton - blood Krypton - isolation & purification Mass spectrometry Mass Spectrometry - methods Medical sciences Membranes Models, Theoretical Monitoring Noble Gases - analysis Noble Gases - blood Noble Gases - isolation & purification Solubility Sulfur Sulfur Hexafluoride - analysis Sulfur Hexafluoride - blood Sulfur Hexafluoride - isolation & purification Water analysis Water sampling |
title | Countercurrent extraction of sparingly soluble gases for membrane introduction mass spectrometry |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A24%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Countercurrent%20extraction%20of%20sparingly%20soluble%20gases%20for%20membrane%20introduction%20mass%20spectrometry&rft.jtitle=Annals%20of%20biomedical%20engineering&rft.au=BAUMGARDNER,%20J.%20E&rft.date=1997-09-01&rft.volume=25&rft.issue=5&rft.spage=858&rft.epage=869&rft.pages=858-869&rft.issn=0090-6964&rft.eissn=1573-9686&rft.coden=ABMECF&rft_id=info:doi/10.1007/BF02684170&rft_dat=%3Cproquest_cross%3E79290798%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c370t-a6ca2f07d874494837ff2c8f5448d9c271b332e44b7b45956176ac61a8ffb1793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=756750928&rft_id=info:pmid/9300110&rfr_iscdi=true |