Loading…
Componentwise ultimate bound and invariant set computation for switched linear systems
We present a novel ultimate bound and invariant set computation method for continuous-time switched linear systems with disturbances and arbitrary switching. The proposed method relies on the existence of a transformation that takes all matrices of the switched linear system into a convenient form s...
Saved in:
Published in: | Automatica (Oxford) 2010-11, Vol.46 (11), p.1897-1901 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present a novel ultimate bound and invariant set computation method for continuous-time switched linear systems with disturbances and arbitrary switching. The proposed method relies on the existence of a transformation that takes all matrices of the switched linear system into a convenient form satisfying certain properties. The method provides ultimate bounds and invariant sets in the form of polyhedral and/or mixed ellipsoidal/polyhedral sets, is completely systematic once the aforementioned transformation is obtained, and provides a new sufficient condition for practical stability. We show that the transformation required by our method can easily be found in the well-known case where the subsystem matrices generate a solvable Lie algebra, and we provide an algorithm to seek such transformation in the general case. An example comparing the bounds obtained by the proposed method with those obtained from a common quadratic Lyapunov function computed via linear matrix inequalities shows a clear advantage of the proposed method in some cases. |
---|---|
ISSN: | 0005-1098 1873-2836 |
DOI: | 10.1016/j.automatica.2010.08.018 |