Loading…
Hydraulic Power Associated with Pulmonary Blood Flow and its Relation to Heart Rate
Pulmonary vascular input impedance and hydraulic power were measured at various heart rates in 29 anesthetized and 5 unanesthetized dogs. Hydraulic power at the pulmonary veno-atrial junction was measured in 5 dogs. The pulmonary vascular impedance spectrum in the unanesthetized dogs did not differ...
Saved in:
Published in: | Circulation research 1966-09, Vol.19 (3), p.467-480 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Pulmonary vascular input impedance and hydraulic power were measured at various heart rates in 29 anesthetized and 5 unanesthetized dogs. Hydraulic power at the pulmonary veno-atrial junction was measured in 5 dogs. The pulmonary vascular impedance spectrum in the unanesthetized dogs did not differ significantly from that in the anesthetized dogs. Average pulmonary arterial power in the anesthetized dogs was 157 milliwatts (mw), of which 108 mw was associated with mean pressure and flow, and 49 mw with the pulsations around these means. Seventy-eight per cent of this input power was dissipated in passage through the pulmonary bed. Kinetic energy accounted for 7% of the total input power.Because of a steep fall in impedance between zero and 3 cycles/sec, and a rate-dependent change in the harmonic structure of flow pulsations, there was an inverse relationship between heart rate and the input power for a given mean flow, up to 180 beats/min. Pulmonary vascular dimensions and elasticity, which determine impedance, thus embody a mechanism whereby tachycardia can increase pulmonary blood flow by as much as 35% with an increase in pulmonary arterial input power of less than 5%, without the intervention of vasomotor activity. |
---|---|
ISSN: | 0009-7330 1524-4571 |
DOI: | 10.1161/01.RES.19.3.467 |