Loading…

On the size of maximal antichains and the number of pairwise disjoint maximal chains

Fix integers n and k with n ≥ k ≥ 3 . Duffus and Sands proved that if P is a finite poset and n ≤ | C | ≤ n + ( n − k ) / ( k − 2 ) for every maximal chain in P , then P must contain k pairwise disjoint maximal antichains. They also constructed a family of examples to show that these inequalities ar...

Full description

Saved in:
Bibliographic Details
Published in:Discrete mathematics 2010-11, Vol.310 (21), p.2890-2894
Main Authors: Howard, David M., Trotter, William T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c362t-52164a984df5756ef74b1dd7a501429bb79e194b18b5c5a46d4a881790d1c97d3
cites cdi_FETCH-LOGICAL-c362t-52164a984df5756ef74b1dd7a501429bb79e194b18b5c5a46d4a881790d1c97d3
container_end_page 2894
container_issue 21
container_start_page 2890
container_title Discrete mathematics
container_volume 310
creator Howard, David M.
Trotter, William T.
description Fix integers n and k with n ≥ k ≥ 3 . Duffus and Sands proved that if P is a finite poset and n ≤ | C | ≤ n + ( n − k ) / ( k − 2 ) for every maximal chain in P , then P must contain k pairwise disjoint maximal antichains. They also constructed a family of examples to show that these inequalities are tight. These examples are two-dimensional which suggests that the dual statement may also hold. In this paper, we show that this is correct. Specifically, we show that if P is a finite poset and n ≤ | A | ≤ n + ( n − k ) / ( k − 2 ) for every maximal antichain in P , then P has k pairwise disjoint maximal chains. Our argument actually proves a somewhat stronger result, and we are able to show that an analogous result holds for antichains.
doi_str_mv 10.1016/j.disc.2010.06.034
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_849451680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0012365X10002487</els_id><sourcerecordid>849451680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-52164a984df5756ef74b1dd7a501429bb79e194b18b5c5a46d4a881790d1c97d3</originalsourceid><addsrcrecordid>eNp9kE1PwyAYx4nRxDn9Ap56MZ5agQKliRez-JYs2WUmuxEKNKNp6YTOt08vtcuOnoAnv__zPPwAuEYwQxCxuybTNqgMw1iALIM5OQEzxAucMo42p2AGIcJpzujmHFyE0MD4ZjmfgfXKJcPWJMH-mKSvk05-2U62iXSDVVtpXYhX_Ye4fVcZP0I7af2nDSaJQ5veuuEYmyKX4KyWbTBXh3MO3p4e14uXdLl6fl08LFOVMzykFCNGZMmJrmlBmakLUiGtC0khIrisqqI0qIw1XlFFJWGaSM5RUUKNVFnofA5up74737_vTRhEFy2YtpXO9PsgOCkJRYzDSOKJVL4PwZta7Hxc2H8LBMVoUDRiNChGgwIyEQ3G0M2hvQxKtrWXTtlwTOIcI8wJjtz9xJn41w9rvAjKGqeMtt6oQeje_jfmF7Rshoo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>849451680</pqid></control><display><type>article</type><title>On the size of maximal antichains and the number of pairwise disjoint maximal chains</title><source>ScienceDirect Freedom Collection</source><creator>Howard, David M. ; Trotter, William T.</creator><creatorcontrib>Howard, David M. ; Trotter, William T.</creatorcontrib><description>Fix integers n and k with n ≥ k ≥ 3 . Duffus and Sands proved that if P is a finite poset and n ≤ | C | ≤ n + ( n − k ) / ( k − 2 ) for every maximal chain in P , then P must contain k pairwise disjoint maximal antichains. They also constructed a family of examples to show that these inequalities are tight. These examples are two-dimensional which suggests that the dual statement may also hold. In this paper, we show that this is correct. Specifically, we show that if P is a finite poset and n ≤ | A | ≤ n + ( n − k ) / ( k − 2 ) for every maximal antichain in P , then P has k pairwise disjoint maximal chains. Our argument actually proves a somewhat stronger result, and we are able to show that an analogous result holds for antichains.</description><identifier>ISSN: 0012-365X</identifier><identifier>EISSN: 1872-681X</identifier><identifier>DOI: 10.1016/j.disc.2010.06.034</identifier><identifier>CODEN: DSMHA4</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Algebra ; Antichains ; Chains ; Combinatorics ; Combinatorics. Ordered structures ; Construction ; Exact sciences and technology ; Inequalities ; Integers ; Mathematical analysis ; Mathematics ; Partially ordered set ; Sands ; Sciences and techniques of general use ; Two dimensional</subject><ispartof>Discrete mathematics, 2010-11, Vol.310 (21), p.2890-2894</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-52164a984df5756ef74b1dd7a501429bb79e194b18b5c5a46d4a881790d1c97d3</citedby><cites>FETCH-LOGICAL-c362t-52164a984df5756ef74b1dd7a501429bb79e194b18b5c5a46d4a881790d1c97d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23212842$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Howard, David M.</creatorcontrib><creatorcontrib>Trotter, William T.</creatorcontrib><title>On the size of maximal antichains and the number of pairwise disjoint maximal chains</title><title>Discrete mathematics</title><description>Fix integers n and k with n ≥ k ≥ 3 . Duffus and Sands proved that if P is a finite poset and n ≤ | C | ≤ n + ( n − k ) / ( k − 2 ) for every maximal chain in P , then P must contain k pairwise disjoint maximal antichains. They also constructed a family of examples to show that these inequalities are tight. These examples are two-dimensional which suggests that the dual statement may also hold. In this paper, we show that this is correct. Specifically, we show that if P is a finite poset and n ≤ | A | ≤ n + ( n − k ) / ( k − 2 ) for every maximal antichain in P , then P has k pairwise disjoint maximal chains. Our argument actually proves a somewhat stronger result, and we are able to show that an analogous result holds for antichains.</description><subject>Algebra</subject><subject>Antichains</subject><subject>Chains</subject><subject>Combinatorics</subject><subject>Combinatorics. Ordered structures</subject><subject>Construction</subject><subject>Exact sciences and technology</subject><subject>Inequalities</subject><subject>Integers</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Partially ordered set</subject><subject>Sands</subject><subject>Sciences and techniques of general use</subject><subject>Two dimensional</subject><issn>0012-365X</issn><issn>1872-681X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwyAYx4nRxDn9Ap56MZ5agQKliRez-JYs2WUmuxEKNKNp6YTOt08vtcuOnoAnv__zPPwAuEYwQxCxuybTNqgMw1iALIM5OQEzxAucMo42p2AGIcJpzujmHFyE0MD4ZjmfgfXKJcPWJMH-mKSvk05-2U62iXSDVVtpXYhX_Ye4fVcZP0I7af2nDSaJQ5veuuEYmyKX4KyWbTBXh3MO3p4e14uXdLl6fl08LFOVMzykFCNGZMmJrmlBmakLUiGtC0khIrisqqI0qIw1XlFFJWGaSM5RUUKNVFnofA5up74737_vTRhEFy2YtpXO9PsgOCkJRYzDSOKJVL4PwZta7Hxc2H8LBMVoUDRiNChGgwIyEQ3G0M2hvQxKtrWXTtlwTOIcI8wJjtz9xJn41w9rvAjKGqeMtt6oQeje_jfmF7Rshoo</recordid><startdate>20101106</startdate><enddate>20101106</enddate><creator>Howard, David M.</creator><creator>Trotter, William T.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20101106</creationdate><title>On the size of maximal antichains and the number of pairwise disjoint maximal chains</title><author>Howard, David M. ; Trotter, William T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-52164a984df5756ef74b1dd7a501429bb79e194b18b5c5a46d4a881790d1c97d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algebra</topic><topic>Antichains</topic><topic>Chains</topic><topic>Combinatorics</topic><topic>Combinatorics. Ordered structures</topic><topic>Construction</topic><topic>Exact sciences and technology</topic><topic>Inequalities</topic><topic>Integers</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Partially ordered set</topic><topic>Sands</topic><topic>Sciences and techniques of general use</topic><topic>Two dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Howard, David M.</creatorcontrib><creatorcontrib>Trotter, William T.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Howard, David M.</au><au>Trotter, William T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the size of maximal antichains and the number of pairwise disjoint maximal chains</atitle><jtitle>Discrete mathematics</jtitle><date>2010-11-06</date><risdate>2010</risdate><volume>310</volume><issue>21</issue><spage>2890</spage><epage>2894</epage><pages>2890-2894</pages><issn>0012-365X</issn><eissn>1872-681X</eissn><coden>DSMHA4</coden><abstract>Fix integers n and k with n ≥ k ≥ 3 . Duffus and Sands proved that if P is a finite poset and n ≤ | C | ≤ n + ( n − k ) / ( k − 2 ) for every maximal chain in P , then P must contain k pairwise disjoint maximal antichains. They also constructed a family of examples to show that these inequalities are tight. These examples are two-dimensional which suggests that the dual statement may also hold. In this paper, we show that this is correct. Specifically, we show that if P is a finite poset and n ≤ | A | ≤ n + ( n − k ) / ( k − 2 ) for every maximal antichain in P , then P has k pairwise disjoint maximal chains. Our argument actually proves a somewhat stronger result, and we are able to show that an analogous result holds for antichains.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.disc.2010.06.034</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0012-365X
ispartof Discrete mathematics, 2010-11, Vol.310 (21), p.2890-2894
issn 0012-365X
1872-681X
language eng
recordid cdi_proquest_miscellaneous_849451680
source ScienceDirect Freedom Collection
subjects Algebra
Antichains
Chains
Combinatorics
Combinatorics. Ordered structures
Construction
Exact sciences and technology
Inequalities
Integers
Mathematical analysis
Mathematics
Partially ordered set
Sands
Sciences and techniques of general use
Two dimensional
title On the size of maximal antichains and the number of pairwise disjoint maximal chains
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A25%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20size%20of%20maximal%20antichains%20and%20the%20number%20of%20pairwise%20disjoint%20maximal%20chains&rft.jtitle=Discrete%20mathematics&rft.au=Howard,%20David%20M.&rft.date=2010-11-06&rft.volume=310&rft.issue=21&rft.spage=2890&rft.epage=2894&rft.pages=2890-2894&rft.issn=0012-365X&rft.eissn=1872-681X&rft.coden=DSMHA4&rft_id=info:doi/10.1016/j.disc.2010.06.034&rft_dat=%3Cproquest_cross%3E849451680%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c362t-52164a984df5756ef74b1dd7a501429bb79e194b18b5c5a46d4a881790d1c97d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=849451680&rft_id=info:pmid/&rfr_iscdi=true