Loading…

Eigenvalues of kinematical conservation laws (KCL) based 3-D weakly nonlinear ray theory (WNLRT)

System of kinematical conservation laws (KCL) govern evolution of a curve in a plane or a surface in space, even if the curve or the surface has singularities on it. In our recent publication [K.R. Arun, P. Prasad, 3-D kinematical conservation laws (KCL): evolution of a surface in R 3 -in particular...

Full description

Saved in:
Bibliographic Details
Published in:Applied mathematics and computation 2010-11, Vol.217 (5), p.2285-2288
Main Authors: Arun, K.R., Prasad, Phoolan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:System of kinematical conservation laws (KCL) govern evolution of a curve in a plane or a surface in space, even if the curve or the surface has singularities on it. In our recent publication [K.R. Arun, P. Prasad, 3-D kinematical conservation laws (KCL): evolution of a surface in R 3 -in particular propagation of a nonlinear wavefront, Wave Motion 46 (2009) 293–311] we have developed a mathematical theory to study the successive positions and geometry of a 3-D weakly nonlinear wavefront by adding an energy transport equation to KCL. The 7 × 7 system of equations of this KCL based 3-D weakly nonlinear ray theory (WNLRT) is quite complex and explicit expressions for its two nonzero eigenvalues could not be obtained before. In this short note, we use two different methods: (i) the equivalence of KCL and ray equations and (ii) the transformation of surface coordinates, to derive the same exact expressions for these eigenvalues. The explicit expressions for nonzero eigenvalues are important also for checking stability of any numerical scheme to solve 3-D WNLRT.
ISSN:0096-3003
1873-5649
DOI:10.1016/j.amc.2010.06.041