Loading…
Size-dependent thermal preferences in a pelagic fish
Large fish often inhabit colder waters than small fish. Using a simple bioenergetic model, we found that the optimal temperature for growth should decrease with increasing body size. We predicted that this mechanism would produce an ontogenetic change in thermal preference and then tested our predic...
Saved in:
Published in: | Oikos 2010-08, Vol.119 (8), p.1265-1272 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Large fish often inhabit colder waters than small fish. Using a simple bioenergetic model, we found that the optimal temperature for growth should decrease with increasing body size. We predicted that this mechanism would produce an ontogenetic change in thermal preference and then tested our predictions with Pacific salmon, Oncorhynchus spp. In a laboratory experiment, the slope of a regression of growth increment on initial size became steeper with increasing temperature, so that the optimal temperature for growth decreased with increasing body size. In field observations, larger and older salmon inhabited cooler areas, whereas smaller and younger salmon inhabited warmer areas. These patterns were consistent with a size-dependent effect of temperature on condition factor, a parameter shown experimentally to be a measure of the most recent growth performance. Temperatures for maximising condition factor were lower for larger fish. Thus, an ontogenetic change in individual thermal preference toward cooler areas maximises the growth performance of fish, and the negative effects of climate warming on growth are hypothesised to be more severe for larger fish. |
---|---|
ISSN: | 0030-1299 1600-0706 |
DOI: | 10.1111/j.1600-0706.2009.18125.x |