Loading…
A Comparison between Raw Ensemble Output, (Modified) Bayesian Model Averaging, and Extended Logistic Regression Using ECMWF Ensemble Precipitation Reforecasts
Using a 20-yr ECMWF ensemble reforecast dataset of total precipitation and a 20-yr dataset of a dense precipitation observation network in the Netherlands, a comparison is made between the raw ensemble output, Bayesian model averaging (BMA), and extended logistic regression (LR). A previous study in...
Saved in:
Published in: | Monthly weather review 2010-11, Vol.138 (11), p.4199-4211 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Using a 20-yr ECMWF ensemble reforecast dataset of total precipitation and a 20-yr dataset of a dense precipitation observation network in the Netherlands, a comparison is made between the raw ensemble output, Bayesian model averaging (BMA), and extended logistic regression (LR). A previous study indicated that BMA and conventional LR are successful in calibrating multimodel ensemble forecasts of precipitation for a single forecast projection. However, a more elaborate comparison between these methods has not yet been made. This study compares the raw ensemble output, BMA, and extended LR for single-model ensemble reforecasts of precipitation; namely, from the ECMWF ensemble prediction system (EPS). The raw EPS output turns out to be generally well calibrated up to 6 forecast days, if compared to the area-mean 24-h precipitation sum. Surprisingly, BMA is less skillful than the raw EPS output from forecast day 3 onward. This is due to the bias correction in BMA, which applies model output statistics to individual ensemble members. As a result, the spread of the bias-corrected ensemble members is decreased, especially for the longer forecast projections. Here, an additive bias correction is applied instead and the equation for the probability of precipitation in BMA is also changed. These modifications to BMA are referred to as “modified BMA” and lead to a significant improvement in the skill of BMA for the longer projections. If the area-maximum 24-h precipitation sum is used as a predictand, both modified BMA and extended LR improve the raw EPS output significantly for the first 5 forecast days. However, the difference in skill between modified BMA and extended LR does not seem to be statistically significant. Yet, extended LR might be preferred, because incorporating predictors that are different from the predictand is straightforward, in contrast to BMA. |
---|---|
ISSN: | 0027-0644 1520-0493 |
DOI: | 10.1175/2010MWR3285.1 |