Loading…

Environmental Impact Assessment of Chemical Process Using the Green Degree Method

Achieving sustainable development while limiting environmental pollution is one of the main enormous challenges for chemical engineering at present. To develop and design a greener alternative to replace or retrofit a current polluted process, it is essential to establish a method for quantitatively...

Full description

Saved in:
Bibliographic Details
Published in:Industrial & engineering chemistry research 2008-02, Vol.47 (4), p.1085-1094
Main Authors: Zhang, Xiangping, Li, Chunshan, Fu, Chao, Zhang, Suojiang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Achieving sustainable development while limiting environmental pollution is one of the main enormous challenges for chemical engineering at present. To develop and design a greener alternative to replace or retrofit a current polluted process, it is essential to establish a method for quantitatively evaluating the environmental impact of a chemical process so that its environmental performance can be improved by identifying and discovering the bottlenecks that cause the pollution. In this work, a green degree (GD) method is proposed to quantitatively evaluate the environmental impact of a chemical process and related energy-generation system. Definitions and calculation formulas of green degrees for a substance, a mixture, a stream, and a unit (process) are illustrated. The green degree is an integrated index that includes nine environmental impact categories (including global, air, water, and toxicological effects). Therefore, it is comprehensive for assessing and understanding the environmental performance of a complex multicomponent chemical system. Three illustrative case studies are presented to further describe and verify the applicability of the method:  (1) solvent screening by comparing the green degree values of solvents, (2) process route screening for producing methyl methacrylate (MMA), and (3) green degree analysis of the methyl methacrylate process (i-C4 route) by integration with process simulation technology.
ISSN:0888-5885
1520-5045
DOI:10.1021/ie0705599