Loading…

Isolation and molecular characterization of theSinorhizobium meliloti bet locus encoding glycine betaine biosynthesis

To cope with osmotic stress,Sinorhizobium meliloti accumulates organic compatible solutes such as glutamate, trehalose, N-acetylglutaminylglutamine amide, and the most potent osmoprotectant glycine betaine. In order to study the regulation of the glycine betaine biosynthetic pathway, a genetic and m...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biosciences 1998-10, Vol.23 (4), p.457-462
Main Authors: Østeras, M, Boncompagni, E, Lambert, A, Dupont, L, Poggi, M C, Le Rudulier, D
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To cope with osmotic stress,Sinorhizobium meliloti accumulates organic compatible solutes such as glutamate, trehalose, N-acetylglutaminylglutamine amide, and the most potent osmoprotectant glycine betaine. In order to study the regulation of the glycine betaine biosynthetic pathway, a genetic and molecular analysis was performed. We have selected a Tn5 mutant ofS. meliloti which was deficient in choline dehydrogenase activity. The mutation was complemented using a genomic bank ofS. meliloti. Subcloning and DNA sequencing of a 8-6 kb region from the complemented plasmid showed four open reading frames with an original structural organization of thebet locus compared to that described inE. coli. (i) ThebetB and thebetA genes which encode a glycine betaine aldehyde dehydrogenase, and a choline dehydrogenase, respectively, are separated from thebetI gene (regulatory protein) by an additional gene namedbetC. The BetC protein shares about 30% identity with various sulphatases and is involved in the conversion of choline-O-sulphate into choline. Choline-O-sulphate is used as an osmoprotectant, or as a carbon or sulphur source and this utilization is dependent on a functionalbet locus. (ii) No sequence homologous tobetT (encoding a high-affinity choline transport system inE. coli) was found in the vicinity of thebet locus. (iii) ThebetB and thebetA genes, as well as thebetI and thebetC genes are, respectively, separated by 211 and 167 bp sequences containing inverted repeats. Southern blot analysis indicated that thebet locus is located on the chromosome, and not on the megaplasmids.[PUBLICATION ABSTRACT]
ISSN:0250-5991
0973-7138
DOI:10.1007/BF02936139