Loading…

Preliminary Testing of the Influence of Modified Polycaprolactones on Anabaena Variabilis Growth in Seawater

Several new biodegradable polymer materials have recently come onto the global market. Mostly the results on degradation kinetic studies are presented. This paper suggests using one of the tests to estimate the impact of polymer packaging material on sea life. The microorganism chosen was Anabaena v...

Full description

Saved in:
Bibliographic Details
Published in:Journal of polymers and the environment 2010-12, Vol.18 (4), p.679-684
Main Authors: Guzman, Agnieszka, Janik, Helena, Kosakowska, Alicja
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Several new biodegradable polymer materials have recently come onto the global market. Mostly the results on degradation kinetic studies are presented. This paper suggests using one of the tests to estimate the impact of polymer packaging material on sea life. The microorganism chosen was Anabaena variabilis (identified in many waters, including those of the Baltic Sea, especially in the Gulf of Gdańsk and Puck Bay; this cyanobacterium has a tendency to move with deep-sea waters causing algal blooms that upset the ecological balance of the marine environment [1]). The chosen polymer materials were polycaprolactone modified with thermoplastic starch (PCL/TPS > 85%) or with calcium carbonate (60% PCL/40% CaCO₃). They were incubated in seawater in the presence of A. variabilis. The chlorophyll a content was determined as the criterion of cyanobacterial growth in the presence of the tested polymers. The polymer surface and colour changes in the cyanobacterium culture were recorded photographically. The experimental results indicate that the addition of polymer samples to the cyanobacterium culture affects its biological balance. During the experiment in seawater, cyanobacteria adhered to the polymer surfaces and their growth was stimulated to different degree by the polymers. Thus, the suggested test differentiate the behaviour of both materials studied. Cyanobacterial growth was lower in the presence of PCL modified with calcium carbonate than in the presence PCL/TPS blend.
ISSN:1566-2543
1572-8919
1572-8900
DOI:10.1007/s10924-010-0236-6