Loading…
Adaptive Neural Control for Output Feedback Nonlinear Systems Using a Barrier Lyapunov Function
In this brief, adaptive neural control is presented for a class of output feedback nonlinear systems in the presence of unknown functions. The unknown functions are handled via on-line neural network (NN) control using only output measurements. A barrier Lyapunov function (BLF) is introduced to addr...
Saved in:
Published in: | IEEE transaction on neural networks and learning systems 2010-08, Vol.21 (8), p.1339-1345 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this brief, adaptive neural control is presented for a class of output feedback nonlinear systems in the presence of unknown functions. The unknown functions are handled via on-line neural network (NN) control using only output measurements. A barrier Lyapunov function (BLF) is introduced to address two open and challenging problems in the neuro-control area: 1) for any initial compact set, how to determine a priori the compact superset, on which NN approximation is valid; and 2) how to ensure that the arguments of the unknown functions remain within the specified compact superset. By ensuring boundedness of the BLF, we actively constrain the argument of the unknown functions to remain within a compact superset such that the NN approximation conditions hold. The semiglobal boundedness of all closed-loop signals is ensured, and the tracking error converges to a neighborhood of zero. Simulation results demonstrate the effectiveness of the proposed approach. |
---|---|
ISSN: | 1045-9227 2162-237X 1941-0093 2162-2388 |
DOI: | 10.1109/TNN.2010.2047115 |