Loading…
Exponential Synchronization of Linearly Coupled Neural Networks With Impulsive Disturbances
This brief investigates globally exponential synchronization for linearly coupled neural networks (NNs) with time-varying delay and impulsive disturbances. Since the impulsive effects discussed in this brief are regarded as disturbances, the impulses should not happen too frequently. The concept of...
Saved in:
Published in: | IEEE transaction on neural networks and learning systems 2011-02, Vol.22 (2), p.329-336 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This brief investigates globally exponential synchronization for linearly coupled neural networks (NNs) with time-varying delay and impulsive disturbances. Since the impulsive effects discussed in this brief are regarded as disturbances, the impulses should not happen too frequently. The concept of average impulsive interval is used to formalize this phenomenon. By referring to an impulsive delay differential inequality, we investigate the globally exponential synchronization of linearly coupled NNs with impulsive disturbances. The derived sufficient condition is closely related with the time delay, impulse strengths, average impulsive interval, and coupling structure of the systems. The obtained criterion is given in terms of an algebraic inequality which is easy to be verified, and hence our result is valid for large-scale systems. The results extend and improve upon earlier work. As a numerical example, a small-world network composing of impulsive coupled chaotic delayed NN nodes is given to illustrate our theoretical result. |
---|---|
ISSN: | 1045-9227 2162-237X 1941-0093 2162-2388 |
DOI: | 10.1109/TNN.2010.2101081 |