Loading…
Exponential Synchronization of Linearly Coupled Neural Networks With Impulsive Disturbances
This brief investigates globally exponential synchronization for linearly coupled neural networks (NNs) with time-varying delay and impulsive disturbances. Since the impulsive effects discussed in this brief are regarded as disturbances, the impulses should not happen too frequently. The concept of...
Saved in:
Published in: | IEEE transaction on neural networks and learning systems 2011-02, Vol.22 (2), p.329-336 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c449t-f744ce3d5f119a3d43f59904e6a5f0dc755d93c07370fae4cea2c3c7d05ffa223 |
---|---|
cites | cdi_FETCH-LOGICAL-c449t-f744ce3d5f119a3d43f59904e6a5f0dc755d93c07370fae4cea2c3c7d05ffa223 |
container_end_page | 336 |
container_issue | 2 |
container_start_page | 329 |
container_title | IEEE transaction on neural networks and learning systems |
container_volume | 22 |
creator | Jianquan Lu Ho, D W C Jinde Cao Kurths, J |
description | This brief investigates globally exponential synchronization for linearly coupled neural networks (NNs) with time-varying delay and impulsive disturbances. Since the impulsive effects discussed in this brief are regarded as disturbances, the impulses should not happen too frequently. The concept of average impulsive interval is used to formalize this phenomenon. By referring to an impulsive delay differential inequality, we investigate the globally exponential synchronization of linearly coupled NNs with impulsive disturbances. The derived sufficient condition is closely related with the time delay, impulse strengths, average impulsive interval, and coupling structure of the systems. The obtained criterion is given in terms of an algebraic inequality which is easy to be verified, and hence our result is valid for large-scale systems. The results extend and improve upon earlier work. As a numerical example, a small-world network composing of impulsive coupled chaotic delayed NN nodes is given to illustrate our theoretical result. |
doi_str_mv | 10.1109/TNN.2010.2101081 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_861565414</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5688244</ieee_id><sourcerecordid>851227696</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-f744ce3d5f119a3d43f59904e6a5f0dc755d93c07370fae4cea2c3c7d05ffa223</originalsourceid><addsrcrecordid>eNqF0c9LHDEUB_AgLWqt90KhDIXiaWx-Z3IsW7XCsh5UPHgYYuYFY2eTaTLTdvvXm-1uFbz0kh_kkwfvfRF6R_AxIVh_vlosjikuN0rK2pAdtE80JzXGmr0qZ8xFrSlVe-hNzg8YEy6w3EV7lFDGMFf76Pbk9xADhNGbvrpcBXufYvB_zOhjqKKr5j6ASf2qmsVp6KGrFjClQhcw_orpe65u_HhfnS-Hqc_-J1RffR6ndGeChfwWvXamz3C43Q_Q9enJ1exbPb84O599mdeWcz3WTnFugXXCEaIN6zhzQmvMQRrhcGeVEJ1mFiumsDNQrKGWWdVh4ZyhlB2go03dIcUfE-SxXfpsoe9NgDjltpFESMEJ_78UpExLalnkxxfyIU4plDb-IqkkVQXhDbIp5pzAtUPyS5NWLcHtOqC2BNSuA2q3AZUvH7Z1p7sldE8f_iVSwKctMNma3qUySp-fHWu01M26lfcb5wHg6VnIpqGcs0c5RKFz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>851267627</pqid></control><display><type>article</type><title>Exponential Synchronization of Linearly Coupled Neural Networks With Impulsive Disturbances</title><source>IEEE Xplore (Online service)</source><creator>Jianquan Lu ; Ho, D W C ; Jinde Cao ; Kurths, J</creator><creatorcontrib>Jianquan Lu ; Ho, D W C ; Jinde Cao ; Kurths, J</creatorcontrib><description>This brief investigates globally exponential synchronization for linearly coupled neural networks (NNs) with time-varying delay and impulsive disturbances. Since the impulsive effects discussed in this brief are regarded as disturbances, the impulses should not happen too frequently. The concept of average impulsive interval is used to formalize this phenomenon. By referring to an impulsive delay differential inequality, we investigate the globally exponential synchronization of linearly coupled NNs with impulsive disturbances. The derived sufficient condition is closely related with the time delay, impulse strengths, average impulsive interval, and coupling structure of the systems. The obtained criterion is given in terms of an algebraic inequality which is easy to be verified, and hence our result is valid for large-scale systems. The results extend and improve upon earlier work. As a numerical example, a small-world network composing of impulsive coupled chaotic delayed NN nodes is given to illustrate our theoretical result.</description><identifier>ISSN: 1045-9227</identifier><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 1941-0093</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNN.2010.2101081</identifier><identifier>PMID: 21233047</identifier><identifier>CODEN: ITNNEP</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Artificial Intelligence ; Artificial neural networks ; Computer science; control theory; systems ; Computer Simulation - standards ; Computer systems and distributed systems. User interface ; Connectionism. Neural networks ; Cortical Synchronization - physiology ; Couplings ; Delay ; Desynchronizing impulses ; Eigenvalues and eigenfunctions ; Exact sciences and technology ; globally exponential synchronization ; Linear Models ; linearly coupled neural networks ; Mathematical Computing ; Matrix decomposition ; Neural networks ; Neural Networks (Computer) ; Nonlinear Dynamics ; Nonlinear dynamics and nonlinear dynamical systems ; Physics ; Signal Processing, Computer-Assisted ; Software ; Software Design ; Statistical physics, thermodynamics, and nonlinear dynamical systems ; Studies ; Symmetric matrices ; Synchronization ; Synchronization ; coupled oscillators ; Time Factors</subject><ispartof>IEEE transaction on neural networks and learning systems, 2011-02, Vol.22 (2), p.329-336</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2011</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-f744ce3d5f119a3d43f59904e6a5f0dc755d93c07370fae4cea2c3c7d05ffa223</citedby><cites>FETCH-LOGICAL-c449t-f744ce3d5f119a3d43f59904e6a5f0dc755d93c07370fae4cea2c3c7d05ffa223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5688244$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,54777</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23896984$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21233047$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jianquan Lu</creatorcontrib><creatorcontrib>Ho, D W C</creatorcontrib><creatorcontrib>Jinde Cao</creatorcontrib><creatorcontrib>Kurths, J</creatorcontrib><title>Exponential Synchronization of Linearly Coupled Neural Networks With Impulsive Disturbances</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNN</addtitle><addtitle>IEEE Trans Neural Netw</addtitle><description>This brief investigates globally exponential synchronization for linearly coupled neural networks (NNs) with time-varying delay and impulsive disturbances. Since the impulsive effects discussed in this brief are regarded as disturbances, the impulses should not happen too frequently. The concept of average impulsive interval is used to formalize this phenomenon. By referring to an impulsive delay differential inequality, we investigate the globally exponential synchronization of linearly coupled NNs with impulsive disturbances. The derived sufficient condition is closely related with the time delay, impulse strengths, average impulsive interval, and coupling structure of the systems. The obtained criterion is given in terms of an algebraic inequality which is easy to be verified, and hence our result is valid for large-scale systems. The results extend and improve upon earlier work. As a numerical example, a small-world network composing of impulsive coupled chaotic delayed NN nodes is given to illustrate our theoretical result.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Computer science; control theory; systems</subject><subject>Computer Simulation - standards</subject><subject>Computer systems and distributed systems. User interface</subject><subject>Connectionism. Neural networks</subject><subject>Cortical Synchronization - physiology</subject><subject>Couplings</subject><subject>Delay</subject><subject>Desynchronizing impulses</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Exact sciences and technology</subject><subject>globally exponential synchronization</subject><subject>Linear Models</subject><subject>linearly coupled neural networks</subject><subject>Mathematical Computing</subject><subject>Matrix decomposition</subject><subject>Neural networks</subject><subject>Neural Networks (Computer)</subject><subject>Nonlinear Dynamics</subject><subject>Nonlinear dynamics and nonlinear dynamical systems</subject><subject>Physics</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Software</subject><subject>Software Design</subject><subject>Statistical physics, thermodynamics, and nonlinear dynamical systems</subject><subject>Studies</subject><subject>Symmetric matrices</subject><subject>Synchronization</subject><subject>Synchronization ; coupled oscillators</subject><subject>Time Factors</subject><issn>1045-9227</issn><issn>2162-237X</issn><issn>1941-0093</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqF0c9LHDEUB_AgLWqt90KhDIXiaWx-Z3IsW7XCsh5UPHgYYuYFY2eTaTLTdvvXm-1uFbz0kh_kkwfvfRF6R_AxIVh_vlosjikuN0rK2pAdtE80JzXGmr0qZ8xFrSlVe-hNzg8YEy6w3EV7lFDGMFf76Pbk9xADhNGbvrpcBXufYvB_zOhjqKKr5j6ASf2qmsVp6KGrFjClQhcw_orpe65u_HhfnS-Hqc_-J1RffR6ndGeChfwWvXamz3C43Q_Q9enJ1exbPb84O599mdeWcz3WTnFugXXCEaIN6zhzQmvMQRrhcGeVEJ1mFiumsDNQrKGWWdVh4ZyhlB2go03dIcUfE-SxXfpsoe9NgDjltpFESMEJ_78UpExLalnkxxfyIU4plDb-IqkkVQXhDbIp5pzAtUPyS5NWLcHtOqC2BNSuA2q3AZUvH7Z1p7sldE8f_iVSwKctMNma3qUySp-fHWu01M26lfcb5wHg6VnIpqGcs0c5RKFz</recordid><startdate>20110201</startdate><enddate>20110201</enddate><creator>Jianquan Lu</creator><creator>Ho, D W C</creator><creator>Jinde Cao</creator><creator>Kurths, J</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20110201</creationdate><title>Exponential Synchronization of Linearly Coupled Neural Networks With Impulsive Disturbances</title><author>Jianquan Lu ; Ho, D W C ; Jinde Cao ; Kurths, J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-f744ce3d5f119a3d43f59904e6a5f0dc755d93c07370fae4cea2c3c7d05ffa223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Computer science; control theory; systems</topic><topic>Computer Simulation - standards</topic><topic>Computer systems and distributed systems. User interface</topic><topic>Connectionism. Neural networks</topic><topic>Cortical Synchronization - physiology</topic><topic>Couplings</topic><topic>Delay</topic><topic>Desynchronizing impulses</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Exact sciences and technology</topic><topic>globally exponential synchronization</topic><topic>Linear Models</topic><topic>linearly coupled neural networks</topic><topic>Mathematical Computing</topic><topic>Matrix decomposition</topic><topic>Neural networks</topic><topic>Neural Networks (Computer)</topic><topic>Nonlinear Dynamics</topic><topic>Nonlinear dynamics and nonlinear dynamical systems</topic><topic>Physics</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Software</topic><topic>Software Design</topic><topic>Statistical physics, thermodynamics, and nonlinear dynamical systems</topic><topic>Studies</topic><topic>Symmetric matrices</topic><topic>Synchronization</topic><topic>Synchronization ; coupled oscillators</topic><topic>Time Factors</topic><toplevel>online_resources</toplevel><creatorcontrib>Jianquan Lu</creatorcontrib><creatorcontrib>Ho, D W C</creatorcontrib><creatorcontrib>Jinde Cao</creatorcontrib><creatorcontrib>Kurths, J</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jianquan Lu</au><au>Ho, D W C</au><au>Jinde Cao</au><au>Kurths, J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exponential Synchronization of Linearly Coupled Neural Networks With Impulsive Disturbances</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNN</stitle><addtitle>IEEE Trans Neural Netw</addtitle><date>2011-02-01</date><risdate>2011</risdate><volume>22</volume><issue>2</issue><spage>329</spage><epage>336</epage><pages>329-336</pages><issn>1045-9227</issn><issn>2162-237X</issn><eissn>1941-0093</eissn><eissn>2162-2388</eissn><coden>ITNNEP</coden><abstract>This brief investigates globally exponential synchronization for linearly coupled neural networks (NNs) with time-varying delay and impulsive disturbances. Since the impulsive effects discussed in this brief are regarded as disturbances, the impulses should not happen too frequently. The concept of average impulsive interval is used to formalize this phenomenon. By referring to an impulsive delay differential inequality, we investigate the globally exponential synchronization of linearly coupled NNs with impulsive disturbances. The derived sufficient condition is closely related with the time delay, impulse strengths, average impulsive interval, and coupling structure of the systems. The obtained criterion is given in terms of an algebraic inequality which is easy to be verified, and hence our result is valid for large-scale systems. The results extend and improve upon earlier work. As a numerical example, a small-world network composing of impulsive coupled chaotic delayed NN nodes is given to illustrate our theoretical result.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>21233047</pmid><doi>10.1109/TNN.2010.2101081</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1045-9227 |
ispartof | IEEE transaction on neural networks and learning systems, 2011-02, Vol.22 (2), p.329-336 |
issn | 1045-9227 2162-237X 1941-0093 2162-2388 |
language | eng |
recordid | cdi_proquest_miscellaneous_861565414 |
source | IEEE Xplore (Online service) |
subjects | Algorithms Applied sciences Artificial Intelligence Artificial neural networks Computer science control theory systems Computer Simulation - standards Computer systems and distributed systems. User interface Connectionism. Neural networks Cortical Synchronization - physiology Couplings Delay Desynchronizing impulses Eigenvalues and eigenfunctions Exact sciences and technology globally exponential synchronization Linear Models linearly coupled neural networks Mathematical Computing Matrix decomposition Neural networks Neural Networks (Computer) Nonlinear Dynamics Nonlinear dynamics and nonlinear dynamical systems Physics Signal Processing, Computer-Assisted Software Software Design Statistical physics, thermodynamics, and nonlinear dynamical systems Studies Symmetric matrices Synchronization Synchronization coupled oscillators Time Factors |
title | Exponential Synchronization of Linearly Coupled Neural Networks With Impulsive Disturbances |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T06%3A36%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exponential%20Synchronization%20of%20Linearly%20Coupled%20Neural%20Networks%20With%20Impulsive%20Disturbances&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Jianquan%20Lu&rft.date=2011-02-01&rft.volume=22&rft.issue=2&rft.spage=329&rft.epage=336&rft.pages=329-336&rft.issn=1045-9227&rft.eissn=1941-0093&rft.coden=ITNNEP&rft_id=info:doi/10.1109/TNN.2010.2101081&rft_dat=%3Cproquest_cross%3E851227696%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c449t-f744ce3d5f119a3d43f59904e6a5f0dc755d93c07370fae4cea2c3c7d05ffa223%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=851267627&rft_id=info:pmid/21233047&rft_ieee_id=5688244&rfr_iscdi=true |