Loading…

Exponential Synchronization of Linearly Coupled Neural Networks With Impulsive Disturbances

This brief investigates globally exponential synchronization for linearly coupled neural networks (NNs) with time-varying delay and impulsive disturbances. Since the impulsive effects discussed in this brief are regarded as disturbances, the impulses should not happen too frequently. The concept of...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transaction on neural networks and learning systems 2011-02, Vol.22 (2), p.329-336
Main Authors: Jianquan Lu, Ho, D W C, Jinde Cao, Kurths, J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c449t-f744ce3d5f119a3d43f59904e6a5f0dc755d93c07370fae4cea2c3c7d05ffa223
cites cdi_FETCH-LOGICAL-c449t-f744ce3d5f119a3d43f59904e6a5f0dc755d93c07370fae4cea2c3c7d05ffa223
container_end_page 336
container_issue 2
container_start_page 329
container_title IEEE transaction on neural networks and learning systems
container_volume 22
creator Jianquan Lu
Ho, D W C
Jinde Cao
Kurths, J
description This brief investigates globally exponential synchronization for linearly coupled neural networks (NNs) with time-varying delay and impulsive disturbances. Since the impulsive effects discussed in this brief are regarded as disturbances, the impulses should not happen too frequently. The concept of average impulsive interval is used to formalize this phenomenon. By referring to an impulsive delay differential inequality, we investigate the globally exponential synchronization of linearly coupled NNs with impulsive disturbances. The derived sufficient condition is closely related with the time delay, impulse strengths, average impulsive interval, and coupling structure of the systems. The obtained criterion is given in terms of an algebraic inequality which is easy to be verified, and hence our result is valid for large-scale systems. The results extend and improve upon earlier work. As a numerical example, a small-world network composing of impulsive coupled chaotic delayed NN nodes is given to illustrate our theoretical result.
doi_str_mv 10.1109/TNN.2010.2101081
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_861565414</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5688244</ieee_id><sourcerecordid>851227696</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-f744ce3d5f119a3d43f59904e6a5f0dc755d93c07370fae4cea2c3c7d05ffa223</originalsourceid><addsrcrecordid>eNqF0c9LHDEUB_AgLWqt90KhDIXiaWx-Z3IsW7XCsh5UPHgYYuYFY2eTaTLTdvvXm-1uFbz0kh_kkwfvfRF6R_AxIVh_vlosjikuN0rK2pAdtE80JzXGmr0qZ8xFrSlVe-hNzg8YEy6w3EV7lFDGMFf76Pbk9xADhNGbvrpcBXufYvB_zOhjqKKr5j6ASf2qmsVp6KGrFjClQhcw_orpe65u_HhfnS-Hqc_-J1RffR6ndGeChfwWvXamz3C43Q_Q9enJ1exbPb84O599mdeWcz3WTnFugXXCEaIN6zhzQmvMQRrhcGeVEJ1mFiumsDNQrKGWWdVh4ZyhlB2go03dIcUfE-SxXfpsoe9NgDjltpFESMEJ_78UpExLalnkxxfyIU4plDb-IqkkVQXhDbIp5pzAtUPyS5NWLcHtOqC2BNSuA2q3AZUvH7Z1p7sldE8f_iVSwKctMNma3qUySp-fHWu01M26lfcb5wHg6VnIpqGcs0c5RKFz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>851267627</pqid></control><display><type>article</type><title>Exponential Synchronization of Linearly Coupled Neural Networks With Impulsive Disturbances</title><source>IEEE Xplore (Online service)</source><creator>Jianquan Lu ; Ho, D W C ; Jinde Cao ; Kurths, J</creator><creatorcontrib>Jianquan Lu ; Ho, D W C ; Jinde Cao ; Kurths, J</creatorcontrib><description>This brief investigates globally exponential synchronization for linearly coupled neural networks (NNs) with time-varying delay and impulsive disturbances. Since the impulsive effects discussed in this brief are regarded as disturbances, the impulses should not happen too frequently. The concept of average impulsive interval is used to formalize this phenomenon. By referring to an impulsive delay differential inequality, we investigate the globally exponential synchronization of linearly coupled NNs with impulsive disturbances. The derived sufficient condition is closely related with the time delay, impulse strengths, average impulsive interval, and coupling structure of the systems. The obtained criterion is given in terms of an algebraic inequality which is easy to be verified, and hence our result is valid for large-scale systems. The results extend and improve upon earlier work. As a numerical example, a small-world network composing of impulsive coupled chaotic delayed NN nodes is given to illustrate our theoretical result.</description><identifier>ISSN: 1045-9227</identifier><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 1941-0093</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNN.2010.2101081</identifier><identifier>PMID: 21233047</identifier><identifier>CODEN: ITNNEP</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Artificial Intelligence ; Artificial neural networks ; Computer science; control theory; systems ; Computer Simulation - standards ; Computer systems and distributed systems. User interface ; Connectionism. Neural networks ; Cortical Synchronization - physiology ; Couplings ; Delay ; Desynchronizing impulses ; Eigenvalues and eigenfunctions ; Exact sciences and technology ; globally exponential synchronization ; Linear Models ; linearly coupled neural networks ; Mathematical Computing ; Matrix decomposition ; Neural networks ; Neural Networks (Computer) ; Nonlinear Dynamics ; Nonlinear dynamics and nonlinear dynamical systems ; Physics ; Signal Processing, Computer-Assisted ; Software ; Software Design ; Statistical physics, thermodynamics, and nonlinear dynamical systems ; Studies ; Symmetric matrices ; Synchronization ; Synchronization ; coupled oscillators ; Time Factors</subject><ispartof>IEEE transaction on neural networks and learning systems, 2011-02, Vol.22 (2), p.329-336</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2011</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-f744ce3d5f119a3d43f59904e6a5f0dc755d93c07370fae4cea2c3c7d05ffa223</citedby><cites>FETCH-LOGICAL-c449t-f744ce3d5f119a3d43f59904e6a5f0dc755d93c07370fae4cea2c3c7d05ffa223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5688244$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,54777</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23896984$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21233047$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jianquan Lu</creatorcontrib><creatorcontrib>Ho, D W C</creatorcontrib><creatorcontrib>Jinde Cao</creatorcontrib><creatorcontrib>Kurths, J</creatorcontrib><title>Exponential Synchronization of Linearly Coupled Neural Networks With Impulsive Disturbances</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNN</addtitle><addtitle>IEEE Trans Neural Netw</addtitle><description>This brief investigates globally exponential synchronization for linearly coupled neural networks (NNs) with time-varying delay and impulsive disturbances. Since the impulsive effects discussed in this brief are regarded as disturbances, the impulses should not happen too frequently. The concept of average impulsive interval is used to formalize this phenomenon. By referring to an impulsive delay differential inequality, we investigate the globally exponential synchronization of linearly coupled NNs with impulsive disturbances. The derived sufficient condition is closely related with the time delay, impulse strengths, average impulsive interval, and coupling structure of the systems. The obtained criterion is given in terms of an algebraic inequality which is easy to be verified, and hence our result is valid for large-scale systems. The results extend and improve upon earlier work. As a numerical example, a small-world network composing of impulsive coupled chaotic delayed NN nodes is given to illustrate our theoretical result.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Computer science; control theory; systems</subject><subject>Computer Simulation - standards</subject><subject>Computer systems and distributed systems. User interface</subject><subject>Connectionism. Neural networks</subject><subject>Cortical Synchronization - physiology</subject><subject>Couplings</subject><subject>Delay</subject><subject>Desynchronizing impulses</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Exact sciences and technology</subject><subject>globally exponential synchronization</subject><subject>Linear Models</subject><subject>linearly coupled neural networks</subject><subject>Mathematical Computing</subject><subject>Matrix decomposition</subject><subject>Neural networks</subject><subject>Neural Networks (Computer)</subject><subject>Nonlinear Dynamics</subject><subject>Nonlinear dynamics and nonlinear dynamical systems</subject><subject>Physics</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Software</subject><subject>Software Design</subject><subject>Statistical physics, thermodynamics, and nonlinear dynamical systems</subject><subject>Studies</subject><subject>Symmetric matrices</subject><subject>Synchronization</subject><subject>Synchronization ; coupled oscillators</subject><subject>Time Factors</subject><issn>1045-9227</issn><issn>2162-237X</issn><issn>1941-0093</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqF0c9LHDEUB_AgLWqt90KhDIXiaWx-Z3IsW7XCsh5UPHgYYuYFY2eTaTLTdvvXm-1uFbz0kh_kkwfvfRF6R_AxIVh_vlosjikuN0rK2pAdtE80JzXGmr0qZ8xFrSlVe-hNzg8YEy6w3EV7lFDGMFf76Pbk9xADhNGbvrpcBXufYvB_zOhjqKKr5j6ASf2qmsVp6KGrFjClQhcw_orpe65u_HhfnS-Hqc_-J1RffR6ndGeChfwWvXamz3C43Q_Q9enJ1exbPb84O599mdeWcz3WTnFugXXCEaIN6zhzQmvMQRrhcGeVEJ1mFiumsDNQrKGWWdVh4ZyhlB2go03dIcUfE-SxXfpsoe9NgDjltpFESMEJ_78UpExLalnkxxfyIU4plDb-IqkkVQXhDbIp5pzAtUPyS5NWLcHtOqC2BNSuA2q3AZUvH7Z1p7sldE8f_iVSwKctMNma3qUySp-fHWu01M26lfcb5wHg6VnIpqGcs0c5RKFz</recordid><startdate>20110201</startdate><enddate>20110201</enddate><creator>Jianquan Lu</creator><creator>Ho, D W C</creator><creator>Jinde Cao</creator><creator>Kurths, J</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20110201</creationdate><title>Exponential Synchronization of Linearly Coupled Neural Networks With Impulsive Disturbances</title><author>Jianquan Lu ; Ho, D W C ; Jinde Cao ; Kurths, J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-f744ce3d5f119a3d43f59904e6a5f0dc755d93c07370fae4cea2c3c7d05ffa223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Computer science; control theory; systems</topic><topic>Computer Simulation - standards</topic><topic>Computer systems and distributed systems. User interface</topic><topic>Connectionism. Neural networks</topic><topic>Cortical Synchronization - physiology</topic><topic>Couplings</topic><topic>Delay</topic><topic>Desynchronizing impulses</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Exact sciences and technology</topic><topic>globally exponential synchronization</topic><topic>Linear Models</topic><topic>linearly coupled neural networks</topic><topic>Mathematical Computing</topic><topic>Matrix decomposition</topic><topic>Neural networks</topic><topic>Neural Networks (Computer)</topic><topic>Nonlinear Dynamics</topic><topic>Nonlinear dynamics and nonlinear dynamical systems</topic><topic>Physics</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Software</topic><topic>Software Design</topic><topic>Statistical physics, thermodynamics, and nonlinear dynamical systems</topic><topic>Studies</topic><topic>Symmetric matrices</topic><topic>Synchronization</topic><topic>Synchronization ; coupled oscillators</topic><topic>Time Factors</topic><toplevel>online_resources</toplevel><creatorcontrib>Jianquan Lu</creatorcontrib><creatorcontrib>Ho, D W C</creatorcontrib><creatorcontrib>Jinde Cao</creatorcontrib><creatorcontrib>Kurths, J</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jianquan Lu</au><au>Ho, D W C</au><au>Jinde Cao</au><au>Kurths, J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exponential Synchronization of Linearly Coupled Neural Networks With Impulsive Disturbances</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNN</stitle><addtitle>IEEE Trans Neural Netw</addtitle><date>2011-02-01</date><risdate>2011</risdate><volume>22</volume><issue>2</issue><spage>329</spage><epage>336</epage><pages>329-336</pages><issn>1045-9227</issn><issn>2162-237X</issn><eissn>1941-0093</eissn><eissn>2162-2388</eissn><coden>ITNNEP</coden><abstract>This brief investigates globally exponential synchronization for linearly coupled neural networks (NNs) with time-varying delay and impulsive disturbances. Since the impulsive effects discussed in this brief are regarded as disturbances, the impulses should not happen too frequently. The concept of average impulsive interval is used to formalize this phenomenon. By referring to an impulsive delay differential inequality, we investigate the globally exponential synchronization of linearly coupled NNs with impulsive disturbances. The derived sufficient condition is closely related with the time delay, impulse strengths, average impulsive interval, and coupling structure of the systems. The obtained criterion is given in terms of an algebraic inequality which is easy to be verified, and hence our result is valid for large-scale systems. The results extend and improve upon earlier work. As a numerical example, a small-world network composing of impulsive coupled chaotic delayed NN nodes is given to illustrate our theoretical result.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>21233047</pmid><doi>10.1109/TNN.2010.2101081</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1045-9227
ispartof IEEE transaction on neural networks and learning systems, 2011-02, Vol.22 (2), p.329-336
issn 1045-9227
2162-237X
1941-0093
2162-2388
language eng
recordid cdi_proquest_miscellaneous_861565414
source IEEE Xplore (Online service)
subjects Algorithms
Applied sciences
Artificial Intelligence
Artificial neural networks
Computer science
control theory
systems
Computer Simulation - standards
Computer systems and distributed systems. User interface
Connectionism. Neural networks
Cortical Synchronization - physiology
Couplings
Delay
Desynchronizing impulses
Eigenvalues and eigenfunctions
Exact sciences and technology
globally exponential synchronization
Linear Models
linearly coupled neural networks
Mathematical Computing
Matrix decomposition
Neural networks
Neural Networks (Computer)
Nonlinear Dynamics
Nonlinear dynamics and nonlinear dynamical systems
Physics
Signal Processing, Computer-Assisted
Software
Software Design
Statistical physics, thermodynamics, and nonlinear dynamical systems
Studies
Symmetric matrices
Synchronization
Synchronization
coupled oscillators
Time Factors
title Exponential Synchronization of Linearly Coupled Neural Networks With Impulsive Disturbances
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T06%3A36%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exponential%20Synchronization%20of%20Linearly%20Coupled%20Neural%20Networks%20With%20Impulsive%20Disturbances&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Jianquan%20Lu&rft.date=2011-02-01&rft.volume=22&rft.issue=2&rft.spage=329&rft.epage=336&rft.pages=329-336&rft.issn=1045-9227&rft.eissn=1941-0093&rft.coden=ITNNEP&rft_id=info:doi/10.1109/TNN.2010.2101081&rft_dat=%3Cproquest_cross%3E851227696%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c449t-f744ce3d5f119a3d43f59904e6a5f0dc755d93c07370fae4cea2c3c7d05ffa223%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=851267627&rft_id=info:pmid/21233047&rft_ieee_id=5688244&rfr_iscdi=true