Loading…
IL-17R activation of human periodontal ligament fibroblasts induces IL-23 p19 production: Differential involvement of NF-κB versus JNK/AP-1 pathways
Interleukin (IL)-23 is an essential cytokine involved in the expansion of a novel CD4+ T helper subset known as Th17, which has been implicated in the pathogenesis of periodontitis recently. This study hypothesised that Th17 signature cytokine IL-17 may target specialised human periodontal ligament...
Saved in:
Published in: | Molecular immunology 2011-01, Vol.48 (4), p.647-656 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Interleukin (IL)-23 is an essential cytokine involved in the expansion of a novel CD4+ T helper subset known as Th17, which has been implicated in the pathogenesis of periodontitis recently. This study hypothesised that Th17 signature cytokine IL-17 may target specialised human periodontal ligament fibroblasts (hPDLFs) for production of IL-23 p19, a key subunit of IL-23. Primary hPDLFs had steady expression of IL-17 receptor (IL-17R) mRNA and surface-bound protein. IL-17 was capable of stimulating the expression of IL-23 p19 mRNA and protein in cultured hPDLFs, which was attenuated by IL-17 or IL-17R neutralising antibodies. In accordance with the enhanced expression of IL-23 p19, IL-17 stimulation resulted in rapid activation of Akt, p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK) 1/2, c-Jun-N-terminal kinase (JNK), nuclear factor-kappaB (NF-κB), and activator protein-1 (AP-1) in hPDLFs. Inhibitors of Akt, p38 MAPK, ERK 1/2, or NF-κB significantly suppressed, whereas blocking JNK and AP-1 substantially augmented IL-23 p19 production from IL-17-stimulated hPDLFs. Moreover, IL-17-initiated NF-κB activation was blocked by Akt, p38 MAPK, or ERK 1/2 inhibition, while AP-1 activity was specifically abrogated by JNK inhibition. Thus, these results provide evidence that hPDLFs are a target of Th17, and that IL-17 appears to up-regulate the expression of IL-23 p19 via a homeostatic mechanism involving Akt-, p38 MAPK-, and ERK 1/2-dependent NF-κB signalling versus the JNK/AP-1 pathway. Taken together, our findings suggest that disruption of the interaction between IL-17 and IL-23 may be a potential therapeutic approach in the treatment of periodontitis. |
---|---|
ISSN: | 0161-5890 1872-9142 |
DOI: | 10.1016/j.molimm.2010.11.008 |