Loading…
Thermally excited near-field radiation and far-field interference
Thermal radiation from samples of Au layers patterned on GaAs, SiO(2), and SiC at 300 K are studied with a scattering-type scanning near-field optical microscope (wavelength: ~14.5 μm), without applying external illumination. Clear near-field images are obtained with a spatial resolution of ~60 nm....
Saved in:
Published in: | Optics express 2011-04, Vol.19 (8), p.7695-7704 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Thermal radiation from samples of Au layers patterned on GaAs, SiO(2), and SiC at 300 K are studied with a scattering-type scanning near-field optical microscope (wavelength: ~14.5 μm), without applying external illumination. Clear near-field images are obtained with a spatial resolution of ~60 nm. All the near field signals derived from different demodulation procedures decrease rapidly with increasing probe height h with characteristic decay lengths of 40 ~60 nm. Near-field images are free from any signature of in-plane spatial interference. The findings are accounted for by theoretically expected surface evanescent waves, which are thermally excited in the close vicinity of material surfaces. Outside the near-field zone (1 μm < h), signals reappear and vary as a sinusoidal function of h, exhibiting a standing wave-like interference pattern. These far-field signals are ascribed to the effect of weak ambient radiation. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/oe.19.007695 |