Loading…
RBF-FD formulas and convergence properties
The local RBF is becoming increasingly popular as an alternative to the global version that suffers from ill-conditioning. In this paper, we study analytically the convergence behavior of the local RBF method as a function of the number of nodes employed in the scheme, the nodal distance, and the sh...
Saved in:
Published in: | Journal of computational physics 2010-11, Vol.229 (22), p.8281-8295 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The local RBF is becoming increasingly popular as an alternative to the global version that suffers from ill-conditioning. In this paper, we study analytically the convergence behavior of the local RBF method as a function of the number of nodes employed in the scheme, the nodal distance, and the shape parameter. We derive exact formulas for the first and second derivatives in one dimension, and for the Laplacian in two dimensions. Using these formulas we compute Taylor expansions for the error. From this analysis, we find that there is an optimal value of the shape parameter for which the error is minimum. This optimal parameter is independent of the nodal distance. Our theoretical results are corroborated by numerical experiments. |
---|---|
ISSN: | 0021-9991 1090-2716 |
DOI: | 10.1016/j.jcp.2010.07.008 |