Loading…
RBF-FD formulas and convergence properties
The local RBF is becoming increasingly popular as an alternative to the global version that suffers from ill-conditioning. In this paper, we study analytically the convergence behavior of the local RBF method as a function of the number of nodes employed in the scheme, the nodal distance, and the sh...
Saved in:
Published in: | Journal of computational physics 2010-11, Vol.229 (22), p.8281-8295 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c435t-bd037f2b7bf25957cd3af5aa1154e345724a837fba3871115e26b52ac36ca10d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c435t-bd037f2b7bf25957cd3af5aa1154e345724a837fba3871115e26b52ac36ca10d3 |
container_end_page | 8295 |
container_issue | 22 |
container_start_page | 8281 |
container_title | Journal of computational physics |
container_volume | 229 |
creator | Bayona, Victor Moscoso, Miguel Carretero, Manuel Kindelan, Manuel |
description | The local RBF is becoming increasingly popular as an alternative to the global version that suffers from ill-conditioning. In this paper, we study analytically the convergence behavior of the local RBF method as a function of the number of nodes employed in the scheme, the nodal distance, and the shape parameter. We derive exact formulas for the first and second derivatives in one dimension, and for the Laplacian in two dimensions. Using these formulas we compute Taylor expansions for the error. From this analysis, we find that there is an optimal value of the shape parameter for which the error is minimum. This optimal parameter is independent of the nodal distance. Our theoretical results are corroborated by numerical experiments. |
doi_str_mv | 10.1016/j.jcp.2010.07.008 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_864396643</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999110003773</els_id><sourcerecordid>864396643</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-bd037f2b7bf25957cd3af5aa1154e345724a837fba3871115e26b52ac36ca10d3</originalsourceid><addsrcrecordid>eNp9kFFLwzAQx4MoOKcfwLe-iCK0XpImafFJp1NhIIg-h2uaSkrX1mQb-O3N2PBxL3fc8bv7w4-QSwoZBSrv2qw1Y8YgzqAygOKITCiUkDJF5TGZADCalmVJT8lZCC1EQuTFhNx-PM7T-VPSDH657jAk2NeJGfqN9d-2NzYZ_TBav3I2nJOTBrtgL_Z9Sr7mz5-z13Tx_vI2e1ikJudilVY1cNWwSlUNE6VQpubYCERKRW55LhTLsYhEhbxQNG4tk5VgaLg0SKHmU3K9-xujf9Y2rPTSBWO7Dns7rIMuZM5LGUskbw6SVCpVAi8YiyjdocYPIXjb6NG7JfpfTUFvDepWR4N6a1CD0tFPvLnav8dgsGs89saF_0PGOaMyh8jd7zgbrWyc9ToYt5VXO2_NSteDO5DyB3gFg2Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1677903822</pqid></control><display><type>article</type><title>RBF-FD formulas and convergence properties</title><source>Elsevier</source><creator>Bayona, Victor ; Moscoso, Miguel ; Carretero, Manuel ; Kindelan, Manuel</creator><creatorcontrib>Bayona, Victor ; Moscoso, Miguel ; Carretero, Manuel ; Kindelan, Manuel</creatorcontrib><description>The local RBF is becoming increasingly popular as an alternative to the global version that suffers from ill-conditioning. In this paper, we study analytically the convergence behavior of the local RBF method as a function of the number of nodes employed in the scheme, the nodal distance, and the shape parameter. We derive exact formulas for the first and second derivatives in one dimension, and for the Laplacian in two dimensions. Using these formulas we compute Taylor expansions for the error. From this analysis, we find that there is an optimal value of the shape parameter for which the error is minimum. This optimal parameter is independent of the nodal distance. Our theoretical results are corroborated by numerical experiments.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2010.07.008</identifier><identifier>CODEN: JCTPAH</identifier><language>eng</language><publisher>Kidlington: Elsevier Inc</publisher><subject>Computation ; Computational techniques ; Convergence ; Derivatives ; Error analysis ; Exact sciences and technology ; Mathematical analysis ; Mathematical methods in physics ; Mathematical models ; Mesh-free ; Optimization ; Physics ; Radial basis functions ; Two dimensional</subject><ispartof>Journal of computational physics, 2010-11, Vol.229 (22), p.8281-8295</ispartof><rights>2010 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-bd037f2b7bf25957cd3af5aa1154e345724a837fba3871115e26b52ac36ca10d3</citedby><cites>FETCH-LOGICAL-c435t-bd037f2b7bf25957cd3af5aa1154e345724a837fba3871115e26b52ac36ca10d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23321640$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bayona, Victor</creatorcontrib><creatorcontrib>Moscoso, Miguel</creatorcontrib><creatorcontrib>Carretero, Manuel</creatorcontrib><creatorcontrib>Kindelan, Manuel</creatorcontrib><title>RBF-FD formulas and convergence properties</title><title>Journal of computational physics</title><description>The local RBF is becoming increasingly popular as an alternative to the global version that suffers from ill-conditioning. In this paper, we study analytically the convergence behavior of the local RBF method as a function of the number of nodes employed in the scheme, the nodal distance, and the shape parameter. We derive exact formulas for the first and second derivatives in one dimension, and for the Laplacian in two dimensions. Using these formulas we compute Taylor expansions for the error. From this analysis, we find that there is an optimal value of the shape parameter for which the error is minimum. This optimal parameter is independent of the nodal distance. Our theoretical results are corroborated by numerical experiments.</description><subject>Computation</subject><subject>Computational techniques</subject><subject>Convergence</subject><subject>Derivatives</subject><subject>Error analysis</subject><subject>Exact sciences and technology</subject><subject>Mathematical analysis</subject><subject>Mathematical methods in physics</subject><subject>Mathematical models</subject><subject>Mesh-free</subject><subject>Optimization</subject><subject>Physics</subject><subject>Radial basis functions</subject><subject>Two dimensional</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kFFLwzAQx4MoOKcfwLe-iCK0XpImafFJp1NhIIg-h2uaSkrX1mQb-O3N2PBxL3fc8bv7w4-QSwoZBSrv2qw1Y8YgzqAygOKITCiUkDJF5TGZADCalmVJT8lZCC1EQuTFhNx-PM7T-VPSDH657jAk2NeJGfqN9d-2NzYZ_TBav3I2nJOTBrtgL_Z9Sr7mz5-z13Tx_vI2e1ikJudilVY1cNWwSlUNE6VQpubYCERKRW55LhTLsYhEhbxQNG4tk5VgaLg0SKHmU3K9-xujf9Y2rPTSBWO7Dns7rIMuZM5LGUskbw6SVCpVAi8YiyjdocYPIXjb6NG7JfpfTUFvDepWR4N6a1CD0tFPvLnav8dgsGs89saF_0PGOaMyh8jd7zgbrWyc9ToYt5VXO2_NSteDO5DyB3gFg2Y</recordid><startdate>20101101</startdate><enddate>20101101</enddate><creator>Bayona, Victor</creator><creator>Moscoso, Miguel</creator><creator>Carretero, Manuel</creator><creator>Kindelan, Manuel</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20101101</creationdate><title>RBF-FD formulas and convergence properties</title><author>Bayona, Victor ; Moscoso, Miguel ; Carretero, Manuel ; Kindelan, Manuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-bd037f2b7bf25957cd3af5aa1154e345724a837fba3871115e26b52ac36ca10d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Computation</topic><topic>Computational techniques</topic><topic>Convergence</topic><topic>Derivatives</topic><topic>Error analysis</topic><topic>Exact sciences and technology</topic><topic>Mathematical analysis</topic><topic>Mathematical methods in physics</topic><topic>Mathematical models</topic><topic>Mesh-free</topic><topic>Optimization</topic><topic>Physics</topic><topic>Radial basis functions</topic><topic>Two dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bayona, Victor</creatorcontrib><creatorcontrib>Moscoso, Miguel</creatorcontrib><creatorcontrib>Carretero, Manuel</creatorcontrib><creatorcontrib>Kindelan, Manuel</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bayona, Victor</au><au>Moscoso, Miguel</au><au>Carretero, Manuel</au><au>Kindelan, Manuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RBF-FD formulas and convergence properties</atitle><jtitle>Journal of computational physics</jtitle><date>2010-11-01</date><risdate>2010</risdate><volume>229</volume><issue>22</issue><spage>8281</spage><epage>8295</epage><pages>8281-8295</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><coden>JCTPAH</coden><abstract>The local RBF is becoming increasingly popular as an alternative to the global version that suffers from ill-conditioning. In this paper, we study analytically the convergence behavior of the local RBF method as a function of the number of nodes employed in the scheme, the nodal distance, and the shape parameter. We derive exact formulas for the first and second derivatives in one dimension, and for the Laplacian in two dimensions. Using these formulas we compute Taylor expansions for the error. From this analysis, we find that there is an optimal value of the shape parameter for which the error is minimum. This optimal parameter is independent of the nodal distance. Our theoretical results are corroborated by numerical experiments.</abstract><cop>Kidlington</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2010.07.008</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9991 |
ispartof | Journal of computational physics, 2010-11, Vol.229 (22), p.8281-8295 |
issn | 0021-9991 1090-2716 |
language | eng |
recordid | cdi_proquest_miscellaneous_864396643 |
source | Elsevier |
subjects | Computation Computational techniques Convergence Derivatives Error analysis Exact sciences and technology Mathematical analysis Mathematical methods in physics Mathematical models Mesh-free Optimization Physics Radial basis functions Two dimensional |
title | RBF-FD formulas and convergence properties |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A10%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RBF-FD%20formulas%20and%20convergence%20properties&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Bayona,%20Victor&rft.date=2010-11-01&rft.volume=229&rft.issue=22&rft.spage=8281&rft.epage=8295&rft.pages=8281-8295&rft.issn=0021-9991&rft.eissn=1090-2716&rft.coden=JCTPAH&rft_id=info:doi/10.1016/j.jcp.2010.07.008&rft_dat=%3Cproquest_cross%3E864396643%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c435t-bd037f2b7bf25957cd3af5aa1154e345724a837fba3871115e26b52ac36ca10d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1677903822&rft_id=info:pmid/&rfr_iscdi=true |