Loading…

RBF-FD formulas and convergence properties

The local RBF is becoming increasingly popular as an alternative to the global version that suffers from ill-conditioning. In this paper, we study analytically the convergence behavior of the local RBF method as a function of the number of nodes employed in the scheme, the nodal distance, and the sh...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational physics 2010-11, Vol.229 (22), p.8281-8295
Main Authors: Bayona, Victor, Moscoso, Miguel, Carretero, Manuel, Kindelan, Manuel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c435t-bd037f2b7bf25957cd3af5aa1154e345724a837fba3871115e26b52ac36ca10d3
cites cdi_FETCH-LOGICAL-c435t-bd037f2b7bf25957cd3af5aa1154e345724a837fba3871115e26b52ac36ca10d3
container_end_page 8295
container_issue 22
container_start_page 8281
container_title Journal of computational physics
container_volume 229
creator Bayona, Victor
Moscoso, Miguel
Carretero, Manuel
Kindelan, Manuel
description The local RBF is becoming increasingly popular as an alternative to the global version that suffers from ill-conditioning. In this paper, we study analytically the convergence behavior of the local RBF method as a function of the number of nodes employed in the scheme, the nodal distance, and the shape parameter. We derive exact formulas for the first and second derivatives in one dimension, and for the Laplacian in two dimensions. Using these formulas we compute Taylor expansions for the error. From this analysis, we find that there is an optimal value of the shape parameter for which the error is minimum. This optimal parameter is independent of the nodal distance. Our theoretical results are corroborated by numerical experiments.
doi_str_mv 10.1016/j.jcp.2010.07.008
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_864396643</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999110003773</els_id><sourcerecordid>864396643</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-bd037f2b7bf25957cd3af5aa1154e345724a837fba3871115e26b52ac36ca10d3</originalsourceid><addsrcrecordid>eNp9kFFLwzAQx4MoOKcfwLe-iCK0XpImafFJp1NhIIg-h2uaSkrX1mQb-O3N2PBxL3fc8bv7w4-QSwoZBSrv2qw1Y8YgzqAygOKITCiUkDJF5TGZADCalmVJT8lZCC1EQuTFhNx-PM7T-VPSDH657jAk2NeJGfqN9d-2NzYZ_TBav3I2nJOTBrtgL_Z9Sr7mz5-z13Tx_vI2e1ikJudilVY1cNWwSlUNE6VQpubYCERKRW55LhTLsYhEhbxQNG4tk5VgaLg0SKHmU3K9-xujf9Y2rPTSBWO7Dns7rIMuZM5LGUskbw6SVCpVAi8YiyjdocYPIXjb6NG7JfpfTUFvDepWR4N6a1CD0tFPvLnav8dgsGs89saF_0PGOaMyh8jd7zgbrWyc9ToYt5VXO2_NSteDO5DyB3gFg2Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1677903822</pqid></control><display><type>article</type><title>RBF-FD formulas and convergence properties</title><source>Elsevier</source><creator>Bayona, Victor ; Moscoso, Miguel ; Carretero, Manuel ; Kindelan, Manuel</creator><creatorcontrib>Bayona, Victor ; Moscoso, Miguel ; Carretero, Manuel ; Kindelan, Manuel</creatorcontrib><description>The local RBF is becoming increasingly popular as an alternative to the global version that suffers from ill-conditioning. In this paper, we study analytically the convergence behavior of the local RBF method as a function of the number of nodes employed in the scheme, the nodal distance, and the shape parameter. We derive exact formulas for the first and second derivatives in one dimension, and for the Laplacian in two dimensions. Using these formulas we compute Taylor expansions for the error. From this analysis, we find that there is an optimal value of the shape parameter for which the error is minimum. This optimal parameter is independent of the nodal distance. Our theoretical results are corroborated by numerical experiments.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2010.07.008</identifier><identifier>CODEN: JCTPAH</identifier><language>eng</language><publisher>Kidlington: Elsevier Inc</publisher><subject>Computation ; Computational techniques ; Convergence ; Derivatives ; Error analysis ; Exact sciences and technology ; Mathematical analysis ; Mathematical methods in physics ; Mathematical models ; Mesh-free ; Optimization ; Physics ; Radial basis functions ; Two dimensional</subject><ispartof>Journal of computational physics, 2010-11, Vol.229 (22), p.8281-8295</ispartof><rights>2010 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-bd037f2b7bf25957cd3af5aa1154e345724a837fba3871115e26b52ac36ca10d3</citedby><cites>FETCH-LOGICAL-c435t-bd037f2b7bf25957cd3af5aa1154e345724a837fba3871115e26b52ac36ca10d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23321640$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bayona, Victor</creatorcontrib><creatorcontrib>Moscoso, Miguel</creatorcontrib><creatorcontrib>Carretero, Manuel</creatorcontrib><creatorcontrib>Kindelan, Manuel</creatorcontrib><title>RBF-FD formulas and convergence properties</title><title>Journal of computational physics</title><description>The local RBF is becoming increasingly popular as an alternative to the global version that suffers from ill-conditioning. In this paper, we study analytically the convergence behavior of the local RBF method as a function of the number of nodes employed in the scheme, the nodal distance, and the shape parameter. We derive exact formulas for the first and second derivatives in one dimension, and for the Laplacian in two dimensions. Using these formulas we compute Taylor expansions for the error. From this analysis, we find that there is an optimal value of the shape parameter for which the error is minimum. This optimal parameter is independent of the nodal distance. Our theoretical results are corroborated by numerical experiments.</description><subject>Computation</subject><subject>Computational techniques</subject><subject>Convergence</subject><subject>Derivatives</subject><subject>Error analysis</subject><subject>Exact sciences and technology</subject><subject>Mathematical analysis</subject><subject>Mathematical methods in physics</subject><subject>Mathematical models</subject><subject>Mesh-free</subject><subject>Optimization</subject><subject>Physics</subject><subject>Radial basis functions</subject><subject>Two dimensional</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kFFLwzAQx4MoOKcfwLe-iCK0XpImafFJp1NhIIg-h2uaSkrX1mQb-O3N2PBxL3fc8bv7w4-QSwoZBSrv2qw1Y8YgzqAygOKITCiUkDJF5TGZADCalmVJT8lZCC1EQuTFhNx-PM7T-VPSDH657jAk2NeJGfqN9d-2NzYZ_TBav3I2nJOTBrtgL_Z9Sr7mz5-z13Tx_vI2e1ikJudilVY1cNWwSlUNE6VQpubYCERKRW55LhTLsYhEhbxQNG4tk5VgaLg0SKHmU3K9-xujf9Y2rPTSBWO7Dns7rIMuZM5LGUskbw6SVCpVAi8YiyjdocYPIXjb6NG7JfpfTUFvDepWR4N6a1CD0tFPvLnav8dgsGs89saF_0PGOaMyh8jd7zgbrWyc9ToYt5VXO2_NSteDO5DyB3gFg2Y</recordid><startdate>20101101</startdate><enddate>20101101</enddate><creator>Bayona, Victor</creator><creator>Moscoso, Miguel</creator><creator>Carretero, Manuel</creator><creator>Kindelan, Manuel</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20101101</creationdate><title>RBF-FD formulas and convergence properties</title><author>Bayona, Victor ; Moscoso, Miguel ; Carretero, Manuel ; Kindelan, Manuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-bd037f2b7bf25957cd3af5aa1154e345724a837fba3871115e26b52ac36ca10d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Computation</topic><topic>Computational techniques</topic><topic>Convergence</topic><topic>Derivatives</topic><topic>Error analysis</topic><topic>Exact sciences and technology</topic><topic>Mathematical analysis</topic><topic>Mathematical methods in physics</topic><topic>Mathematical models</topic><topic>Mesh-free</topic><topic>Optimization</topic><topic>Physics</topic><topic>Radial basis functions</topic><topic>Two dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bayona, Victor</creatorcontrib><creatorcontrib>Moscoso, Miguel</creatorcontrib><creatorcontrib>Carretero, Manuel</creatorcontrib><creatorcontrib>Kindelan, Manuel</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bayona, Victor</au><au>Moscoso, Miguel</au><au>Carretero, Manuel</au><au>Kindelan, Manuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RBF-FD formulas and convergence properties</atitle><jtitle>Journal of computational physics</jtitle><date>2010-11-01</date><risdate>2010</risdate><volume>229</volume><issue>22</issue><spage>8281</spage><epage>8295</epage><pages>8281-8295</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><coden>JCTPAH</coden><abstract>The local RBF is becoming increasingly popular as an alternative to the global version that suffers from ill-conditioning. In this paper, we study analytically the convergence behavior of the local RBF method as a function of the number of nodes employed in the scheme, the nodal distance, and the shape parameter. We derive exact formulas for the first and second derivatives in one dimension, and for the Laplacian in two dimensions. Using these formulas we compute Taylor expansions for the error. From this analysis, we find that there is an optimal value of the shape parameter for which the error is minimum. This optimal parameter is independent of the nodal distance. Our theoretical results are corroborated by numerical experiments.</abstract><cop>Kidlington</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2010.07.008</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2010-11, Vol.229 (22), p.8281-8295
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_miscellaneous_864396643
source Elsevier
subjects Computation
Computational techniques
Convergence
Derivatives
Error analysis
Exact sciences and technology
Mathematical analysis
Mathematical methods in physics
Mathematical models
Mesh-free
Optimization
Physics
Radial basis functions
Two dimensional
title RBF-FD formulas and convergence properties
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A10%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RBF-FD%20formulas%20and%20convergence%20properties&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Bayona,%20Victor&rft.date=2010-11-01&rft.volume=229&rft.issue=22&rft.spage=8281&rft.epage=8295&rft.pages=8281-8295&rft.issn=0021-9991&rft.eissn=1090-2716&rft.coden=JCTPAH&rft_id=info:doi/10.1016/j.jcp.2010.07.008&rft_dat=%3Cproquest_cross%3E864396643%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c435t-bd037f2b7bf25957cd3af5aa1154e345724a837fba3871115e26b52ac36ca10d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1677903822&rft_id=info:pmid/&rfr_iscdi=true