Loading…
Particle Smoothing in Continuous Time: A Fast Approach via Density Estimation
We consider the particle smoothing problem for state-space models where the transition density is not available in closed form, in particular for continuous-time, nonlinear models expressed via stochastic differential equations (SDEs). Conventional forward-backward and two-filter smoothers for the p...
Saved in:
Published in: | IEEE transactions on signal processing 2011-03, Vol.59 (3), p.1017-1026 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider the particle smoothing problem for state-space models where the transition density is not available in closed form, in particular for continuous-time, nonlinear models expressed via stochastic differential equations (SDEs). Conventional forward-backward and two-filter smoothers for the particle filter require a closed-form transition density, with the linear-Gaussian Euler-Maruyama discretization usually applied to the SDEs to achieve this. We develop a pair of variants using kernel density approximations to relieve the dependence, and in doing so enable use of faster and more accurate discretization schemes such as Runge-Kutta. In addition, the new methods admit arbitrary proposal distributions, providing an avenue to deal with degeneracy issues. Experimental results on a functional magnetic resonance imaging (fMRI) deconvolution task demonstrate comparable accuracy and significantly improved runtime over conventional techniques. |
---|---|
ISSN: | 1053-587X 1941-0476 |
DOI: | 10.1109/TSP.2010.2096418 |