Loading…

Particle Smoothing in Continuous Time: A Fast Approach via Density Estimation

We consider the particle smoothing problem for state-space models where the transition density is not available in closed form, in particular for continuous-time, nonlinear models expressed via stochastic differential equations (SDEs). Conventional forward-backward and two-filter smoothers for the p...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on signal processing 2011-03, Vol.59 (3), p.1017-1026
Main Authors: Murray, Lawrence, Storkey, Amos
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We consider the particle smoothing problem for state-space models where the transition density is not available in closed form, in particular for continuous-time, nonlinear models expressed via stochastic differential equations (SDEs). Conventional forward-backward and two-filter smoothers for the particle filter require a closed-form transition density, with the linear-Gaussian Euler-Maruyama discretization usually applied to the SDEs to achieve this. We develop a pair of variants using kernel density approximations to relieve the dependence, and in doing so enable use of faster and more accurate discretization schemes such as Runge-Kutta. In addition, the new methods admit arbitrary proposal distributions, providing an avenue to deal with degeneracy issues. Experimental results on a functional magnetic resonance imaging (fMRI) deconvolution task demonstrate comparable accuracy and significantly improved runtime over conventional techniques.
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2010.2096418