Loading…
Powers of cycles, powers of paths, and distance graphs
In 1988, Golumbic and Hammer characterized the powers of cycles, relating them to circular arc graphs. We extend their results and propose several further structural characterizations for both powers of cycles and powers of paths. The characterizations lead to linear-time recognition algorithms of t...
Saved in:
Published in: | Discrete Applied Mathematics 2011-04, Vol.159 (7), p.621-627 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In 1988, Golumbic and Hammer characterized the powers of cycles, relating them to circular arc graphs. We extend their results and propose several further structural characterizations for both powers of cycles and powers of paths. The characterizations lead to linear-time recognition algorithms of these classes of graphs. Furthermore, as a generalization of powers of cycles, powers of paths, and even of the well-known circulant graphs, we consider distance graphs. While the colorings of these graphs have been intensively studied, the recognition problem has been so far neglected. We propose polynomial-time recognition algorithms for these graphs under additional restrictions. |
---|---|
ISSN: | 0166-218X 1872-6771 |
DOI: | 10.1016/j.dam.2010.03.012 |