Loading…

Matrix metalloproteinase levels in the drained dialysate reflect the peritoneal solute transport rate: a multicentre study in Japan

Long-term peritoneal dialysis (PD) leads to peritoneal injury with high solute transport of the peritoneal membrane. At worst, peritoneal injury leads to encapsulating peritoneal sclerosis with an extremely high mortality rate. To perform PD safely and adequately, it is necessary to monitor peritone...

Full description

Saved in:
Bibliographic Details
Published in:Nephrology, dialysis, transplantation dialysis, transplantation, 2011-05, Vol.26 (5), p.1695-1701
Main Authors: HIRAHARA, Ichiro, INOUE, Makoto, UMINO, Tetsuo, SAITO, Osamu, MUTO, Shigeaki, KUSANO, Eiji
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Long-term peritoneal dialysis (PD) leads to peritoneal injury with high solute transport of the peritoneal membrane. At worst, peritoneal injury leads to encapsulating peritoneal sclerosis with an extremely high mortality rate. To perform PD safely and adequately, it is necessary to monitor peritoneal injury. The aim of this study was to investigate the potential of matrix metalloproteinases (MMPs) as new indicators of peritoneal injury. The subjects included 215 PD patients with end-stage renal disease at 20 centres in Japan. MMPs or tissue inhibitors of MMP (TIMPs) in the drained dialysate were quantified with enzyme-linked immunosorbent assay. The peritoneal solute transport rate was assessed to estimate peritoneal injury and PD efficiency by the peritoneal equilibration test (PET). MMP-2, MMP-3 and TIMP-1 levels in the drained dialysate obtained by the PET were correlated with the D/P Cr ratios (ρ = 0.69, ρ = 0.52, ρ = 0.55, respectively) and the D/D0 glucose ratios (ρ = -0.60, ρ = -0.47, ρ = -0.48, respectively). The measured D/S ratios of MMP-2 and TIMP-1 were significantly higher than the expected D/S ratios when MMP-2 and TIMP-1 would have been transported from only the circulation. The measured D/S ratios of MMP-3 nearly corresponded to the expected ratios. MMP-1 and TIMP-2 in the drainage were undetected in most patients. From these results, most MMP-2 in the drained dialysate may be produced from the peritoneum, and MMP-2 is expected to be a useful marker of peritoneal injury or change in peritoneal solute transport.
ISSN:0931-0509
1460-2385
DOI:10.1093/ndt/gfq593