Loading…
Mpg1, a fission yeast protein required for proper septum structure, is involved in cell cycle progression through cell-size checkpoint
Using a yeast two-hybrid screen we isolated a gene from Schizosaccharomyces pombe which corresponds to the previously uncharacterized ORF SPCC1906.01. We have designated this gene as mpg1, based on the putative function of its product as a mannose-1-phosphatase guanyltransferase. Mpg1 shows strong s...
Saved in:
Published in: | Molecular genetics and genomics : MGG 2005-09, Vol.274 (2), p.155-167, Article 155 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Using a yeast two-hybrid screen we isolated a gene from Schizosaccharomyces pombe which corresponds to the previously uncharacterized ORF SPCC1906.01. We have designated this gene as mpg1, based on the putative function of its product as a mannose-1-phosphatase guanyltransferase. Mpg1 shows strong similarity to other GDP-mannose-1-phosphate guanyltransferases involved in the maintenance of cell wall integrity and/or glycosylation. This homology, together with the protein's localization pattern demonstrated in this work, strongly suggests that Mpg1 is involved in cell wall and septum synthesis. Moreover, cells lacking Mpg1 present a defect in glycosylation, are more sensitive to Lyticase, and show an aberrant septum structure from the start of its deposition, indicating that the Mpg1 function is necessary for the correct assembly of the septum. Interestingly, lack of Mpg1 clearly affects cell cycle progression: mpg1 null mutants arrest as septated and bi-nucleated 4C cells, without an actomyosin ring. Wee1 is required for the G2/M arrest induced in the absence of Mpg1, since the blockade is circumvented when Wee1 is inactivated. Wee1 is part of a cell-size checkpoint that prevents entry into mitosis before cells reach a critical size. The results presented in this work demonstrate that the G2/M arrest induced in the absence of Mpg1 is mediated by this cell size checkpoint, since oversized mutant cells enter mitosis. The mpg1 loss-of-function mutant, therefore, provides a good model in which to study how cells coordinate cell growth and cell division. |
---|---|
ISSN: | 1617-4615 1617-4623 |
DOI: | 10.1007/s00438-005-0005-8 |