Loading…

Creation and measurement of long-lived magnetic monopole currents in spin ice

The recent discovery of ‘magnetricity’ in spin ice raises the question of whether long-lived currents of magnetic ‘monopoles’ can be created and manipulated by applying magnetic fields. Here we show that they can. By applying a magnetic-field pulse to a Dy 2 Ti 2 O 7 spin-ice crystal at 0.36 K, we c...

Full description

Saved in:
Bibliographic Details
Published in:Nature physics 2011-03, Vol.7 (3), p.252-258
Main Authors: Giblin, S. R., Bramwell, S. T., Holdsworth, P. C. W., Prabhakaran, D., Terry, I.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The recent discovery of ‘magnetricity’ in spin ice raises the question of whether long-lived currents of magnetic ‘monopoles’ can be created and manipulated by applying magnetic fields. Here we show that they can. By applying a magnetic-field pulse to a Dy 2 Ti 2 O 7 spin-ice crystal at 0.36 K, we create a relaxing magnetic current that lasts for several minutes. We measure the current by means of the electromotive force it induces in a solenoid coupled to a sensitive amplifier, and quantitatively describe it using a chemical kinetic model of point-like charges obeying the Onsager–Wien mechanism of carrier dissociation and recombination. We thus derive the microscopic parameters of monopole motion in spin ice and identify the distinct roles of free and bound magnetic charges. Our results illustrate a basic capacitor effect for magnetic charge and should pave the way for the design and realization of ‘magnetronic’ circuitry. Magnetic monopoles have recently been discovered in so-called spin-ice materials. The measurement of magnetic current in a spin-ice crystal now demonstrates the macroscopic consequences of these free, magnetically charged particles, and establishes a perfect equivalence between the bulk electrical properties of a conducting fluid and the bulk magnetic properties of spin ice in the magnetic-monopole regime.
ISSN:1745-2473
1745-2481
DOI:10.1038/nphys1896