Loading…
Solid-State Impact-Ionization Multiplier With P-N Junction Injection Node
The Solid-state Impact-ionization Multiplier (SIM) was designed to amplify signals from arbitrary current sources through impact ionization. A primary application is amplification of signals produced by photodiodes. Photodiodes made from any semiconductor can be wired directly to the SIM's inje...
Saved in:
Published in: | IEEE transactions on electron devices 2009-06, Vol.56 (6), p.1360-1364 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c383t-648e07eaa65eeb3e34f97163da9522d1c56a312c95475c06f76b3255c6999f8a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c383t-648e07eaa65eeb3e34f97163da9522d1c56a312c95475c06f76b3255c6999f8a3 |
container_end_page | 1364 |
container_issue | 6 |
container_start_page | 1360 |
container_title | IEEE transactions on electron devices |
container_volume | 56 |
creator | Johnson, M.S. Beutler, J.L. Nelson, A.P. Hawkins, A.R. |
description | The Solid-state Impact-ionization Multiplier (SIM) was designed to amplify signals from arbitrary current sources through impact ionization. A primary application is amplification of signals produced by photodiodes. Photodiodes made from any semiconductor can be wired directly to the SIM's injection node. In previous versions of the SIM, this injection node was a Schottky contact to silicon. This paper describes a SIM design that injects electrons into the SIM's depletion region through a p-n junction. The injection node is analyzed including how the node's floating voltage changes versus input current. Devices were made using epitaxial silicon and modeled using commercial software. The measured gain characteristics match closely to simulated results and are influenced by high electric fields near the SIM's depletion region edges. Measured frequency response was dominated by charging effects related to the floating node, leading to a response that scales with the inverse of the input current. |
doi_str_mv | 10.1109/TED.2009.2019421 |
format | article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_869847959</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4895300</ieee_id><sourcerecordid>2292067641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-648e07eaa65eeb3e34f97163da9522d1c56a312c95475c06f76b3255c6999f8a3</originalsourceid><addsrcrecordid>eNp9kU1Lw0AQhhdRsFbvgpcgqKfofmf3KLVqpFahFY_LdjvBLWlSs8lBf71bW3rw4GU-mGfeYXgROiX4mhCsb6bDu2uKsY6BaE7JHuoRIbJUSy73UQ9jolLNFDtERyEsYis5pz2UT-rSz9NJa1tI8uXKujbN68p_29bXVfLcla1flR6a5N23H8lrOk6eusr9DvNqAZtqXM_hGB0Utgxwss199HY_nA4e09HLQz64HaUuXm9TyRXgDKyVAmDGgPFCZ0SyudWC0jlxQlpGqNOCZ8JhWWRyxqgQTmqtC2VZH11tdFdN_dlBaM3SBwdlaSuou2CU1IpnWuhIXv5LMi6VyDiJ4PkfcFF3TRW_MEpITaMkjRDeQK6pQ2igMKvGL23zZQg2awtMtMCsLTBbC-LKxVbXBmfLorGV82G3R0nGI8ojd7bhPADsxlxpwTBmPwnejJY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>856928692</pqid></control><display><type>article</type><title>Solid-State Impact-Ionization Multiplier With P-N Junction Injection Node</title><source>IEEE Xplore (Online service)</source><creator>Johnson, M.S. ; Beutler, J.L. ; Nelson, A.P. ; Hawkins, A.R.</creator><creatorcontrib>Johnson, M.S. ; Beutler, J.L. ; Nelson, A.P. ; Hawkins, A.R.</creatorcontrib><description>The Solid-state Impact-ionization Multiplier (SIM) was designed to amplify signals from arbitrary current sources through impact ionization. A primary application is amplification of signals produced by photodiodes. Photodiodes made from any semiconductor can be wired directly to the SIM's injection node. In previous versions of the SIM, this injection node was a Schottky contact to silicon. This paper describes a SIM design that injects electrons into the SIM's depletion region through a p-n junction. The injection node is analyzed including how the node's floating voltage changes versus input current. Devices were made using epitaxial silicon and modeled using commercial software. The measured gain characteristics match closely to simulated results and are influenced by high electric fields near the SIM's depletion region edges. Measured frequency response was dominated by charging effects related to the floating node, leading to a response that scales with the inverse of the input current.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2009.2019421</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Amplification ; Applied sciences ; Avalanche breakdown ; avalanche diodes ; Circuit properties ; Compound structure devices ; Depletion ; Devices ; Digital circuits ; Electric, optical and optoelectronic circuits ; Electronic circuits ; Electronic equipment and fabrication. Passive components, printed wiring boards, connectics ; Electronics ; Exact sciences and technology ; impact ionization ; Mathematical models ; Optoelectronic devices ; P-n junctions ; Photodiodes ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Semiconductors ; SIM</subject><ispartof>IEEE transactions on electron devices, 2009-06, Vol.56 (6), p.1360-1364</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-648e07eaa65eeb3e34f97163da9522d1c56a312c95475c06f76b3255c6999f8a3</citedby><cites>FETCH-LOGICAL-c383t-648e07eaa65eeb3e34f97163da9522d1c56a312c95475c06f76b3255c6999f8a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4895300$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21742014$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Johnson, M.S.</creatorcontrib><creatorcontrib>Beutler, J.L.</creatorcontrib><creatorcontrib>Nelson, A.P.</creatorcontrib><creatorcontrib>Hawkins, A.R.</creatorcontrib><title>Solid-State Impact-Ionization Multiplier With P-N Junction Injection Node</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>The Solid-state Impact-ionization Multiplier (SIM) was designed to amplify signals from arbitrary current sources through impact ionization. A primary application is amplification of signals produced by photodiodes. Photodiodes made from any semiconductor can be wired directly to the SIM's injection node. In previous versions of the SIM, this injection node was a Schottky contact to silicon. This paper describes a SIM design that injects electrons into the SIM's depletion region through a p-n junction. The injection node is analyzed including how the node's floating voltage changes versus input current. Devices were made using epitaxial silicon and modeled using commercial software. The measured gain characteristics match closely to simulated results and are influenced by high electric fields near the SIM's depletion region edges. Measured frequency response was dominated by charging effects related to the floating node, leading to a response that scales with the inverse of the input current.</description><subject>Amplification</subject><subject>Applied sciences</subject><subject>Avalanche breakdown</subject><subject>avalanche diodes</subject><subject>Circuit properties</subject><subject>Compound structure devices</subject><subject>Depletion</subject><subject>Devices</subject><subject>Digital circuits</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronic circuits</subject><subject>Electronic equipment and fabrication. Passive components, printed wiring boards, connectics</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>impact ionization</subject><subject>Mathematical models</subject><subject>Optoelectronic devices</subject><subject>P-n junctions</subject><subject>Photodiodes</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Semiconductors</subject><subject>SIM</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kU1Lw0AQhhdRsFbvgpcgqKfofmf3KLVqpFahFY_LdjvBLWlSs8lBf71bW3rw4GU-mGfeYXgROiX4mhCsb6bDu2uKsY6BaE7JHuoRIbJUSy73UQ9jolLNFDtERyEsYis5pz2UT-rSz9NJa1tI8uXKujbN68p_29bXVfLcla1flR6a5N23H8lrOk6eusr9DvNqAZtqXM_hGB0Utgxwss199HY_nA4e09HLQz64HaUuXm9TyRXgDKyVAmDGgPFCZ0SyudWC0jlxQlpGqNOCZ8JhWWRyxqgQTmqtC2VZH11tdFdN_dlBaM3SBwdlaSuou2CU1IpnWuhIXv5LMi6VyDiJ4PkfcFF3TRW_MEpITaMkjRDeQK6pQ2igMKvGL23zZQg2awtMtMCsLTBbC-LKxVbXBmfLorGV82G3R0nGI8ojd7bhPADsxlxpwTBmPwnejJY</recordid><startdate>20090601</startdate><enddate>20090601</enddate><creator>Johnson, M.S.</creator><creator>Beutler, J.L.</creator><creator>Nelson, A.P.</creator><creator>Hawkins, A.R.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20090601</creationdate><title>Solid-State Impact-Ionization Multiplier With P-N Junction Injection Node</title><author>Johnson, M.S. ; Beutler, J.L. ; Nelson, A.P. ; Hawkins, A.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-648e07eaa65eeb3e34f97163da9522d1c56a312c95475c06f76b3255c6999f8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Amplification</topic><topic>Applied sciences</topic><topic>Avalanche breakdown</topic><topic>avalanche diodes</topic><topic>Circuit properties</topic><topic>Compound structure devices</topic><topic>Depletion</topic><topic>Devices</topic><topic>Digital circuits</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronic circuits</topic><topic>Electronic equipment and fabrication. Passive components, printed wiring boards, connectics</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>impact ionization</topic><topic>Mathematical models</topic><topic>Optoelectronic devices</topic><topic>P-n junctions</topic><topic>Photodiodes</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Semiconductors</topic><topic>SIM</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Johnson, M.S.</creatorcontrib><creatorcontrib>Beutler, J.L.</creatorcontrib><creatorcontrib>Nelson, A.P.</creatorcontrib><creatorcontrib>Hawkins, A.R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEL</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Johnson, M.S.</au><au>Beutler, J.L.</au><au>Nelson, A.P.</au><au>Hawkins, A.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solid-State Impact-Ionization Multiplier With P-N Junction Injection Node</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2009-06-01</date><risdate>2009</risdate><volume>56</volume><issue>6</issue><spage>1360</spage><epage>1364</epage><pages>1360-1364</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>The Solid-state Impact-ionization Multiplier (SIM) was designed to amplify signals from arbitrary current sources through impact ionization. A primary application is amplification of signals produced by photodiodes. Photodiodes made from any semiconductor can be wired directly to the SIM's injection node. In previous versions of the SIM, this injection node was a Schottky contact to silicon. This paper describes a SIM design that injects electrons into the SIM's depletion region through a p-n junction. The injection node is analyzed including how the node's floating voltage changes versus input current. Devices were made using epitaxial silicon and modeled using commercial software. The measured gain characteristics match closely to simulated results and are influenced by high electric fields near the SIM's depletion region edges. Measured frequency response was dominated by charging effects related to the floating node, leading to a response that scales with the inverse of the input current.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TED.2009.2019421</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2009-06, Vol.56 (6), p.1360-1364 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_proquest_miscellaneous_869847959 |
source | IEEE Xplore (Online service) |
subjects | Amplification Applied sciences Avalanche breakdown avalanche diodes Circuit properties Compound structure devices Depletion Devices Digital circuits Electric, optical and optoelectronic circuits Electronic circuits Electronic equipment and fabrication. Passive components, printed wiring boards, connectics Electronics Exact sciences and technology impact ionization Mathematical models Optoelectronic devices P-n junctions Photodiodes Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Semiconductors SIM |
title | Solid-State Impact-Ionization Multiplier With P-N Junction Injection Node |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A45%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solid-State%20Impact-Ionization%20Multiplier%20With%20P-N%20Junction%20Injection%20Node&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Johnson,%20M.S.&rft.date=2009-06-01&rft.volume=56&rft.issue=6&rft.spage=1360&rft.epage=1364&rft.pages=1360-1364&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2009.2019421&rft_dat=%3Cproquest_pasca%3E2292067641%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c383t-648e07eaa65eeb3e34f97163da9522d1c56a312c95475c06f76b3255c6999f8a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=856928692&rft_id=info:pmid/&rft_ieee_id=4895300&rfr_iscdi=true |