Loading…

Solid-State Impact-Ionization Multiplier With P-N Junction Injection Node

The Solid-state Impact-ionization Multiplier (SIM) was designed to amplify signals from arbitrary current sources through impact ionization. A primary application is amplification of signals produced by photodiodes. Photodiodes made from any semiconductor can be wired directly to the SIM's inje...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on electron devices 2009-06, Vol.56 (6), p.1360-1364
Main Authors: Johnson, M.S., Beutler, J.L., Nelson, A.P., Hawkins, A.R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c383t-648e07eaa65eeb3e34f97163da9522d1c56a312c95475c06f76b3255c6999f8a3
cites cdi_FETCH-LOGICAL-c383t-648e07eaa65eeb3e34f97163da9522d1c56a312c95475c06f76b3255c6999f8a3
container_end_page 1364
container_issue 6
container_start_page 1360
container_title IEEE transactions on electron devices
container_volume 56
creator Johnson, M.S.
Beutler, J.L.
Nelson, A.P.
Hawkins, A.R.
description The Solid-state Impact-ionization Multiplier (SIM) was designed to amplify signals from arbitrary current sources through impact ionization. A primary application is amplification of signals produced by photodiodes. Photodiodes made from any semiconductor can be wired directly to the SIM's injection node. In previous versions of the SIM, this injection node was a Schottky contact to silicon. This paper describes a SIM design that injects electrons into the SIM's depletion region through a p-n junction. The injection node is analyzed including how the node's floating voltage changes versus input current. Devices were made using epitaxial silicon and modeled using commercial software. The measured gain characteristics match closely to simulated results and are influenced by high electric fields near the SIM's depletion region edges. Measured frequency response was dominated by charging effects related to the floating node, leading to a response that scales with the inverse of the input current.
doi_str_mv 10.1109/TED.2009.2019421
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_869847959</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4895300</ieee_id><sourcerecordid>2292067641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-648e07eaa65eeb3e34f97163da9522d1c56a312c95475c06f76b3255c6999f8a3</originalsourceid><addsrcrecordid>eNp9kU1Lw0AQhhdRsFbvgpcgqKfofmf3KLVqpFahFY_LdjvBLWlSs8lBf71bW3rw4GU-mGfeYXgROiX4mhCsb6bDu2uKsY6BaE7JHuoRIbJUSy73UQ9jolLNFDtERyEsYis5pz2UT-rSz9NJa1tI8uXKujbN68p_29bXVfLcla1flR6a5N23H8lrOk6eusr9DvNqAZtqXM_hGB0Utgxwss199HY_nA4e09HLQz64HaUuXm9TyRXgDKyVAmDGgPFCZ0SyudWC0jlxQlpGqNOCZ8JhWWRyxqgQTmqtC2VZH11tdFdN_dlBaM3SBwdlaSuou2CU1IpnWuhIXv5LMi6VyDiJ4PkfcFF3TRW_MEpITaMkjRDeQK6pQ2igMKvGL23zZQg2awtMtMCsLTBbC-LKxVbXBmfLorGV82G3R0nGI8ojd7bhPADsxlxpwTBmPwnejJY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>856928692</pqid></control><display><type>article</type><title>Solid-State Impact-Ionization Multiplier With P-N Junction Injection Node</title><source>IEEE Xplore (Online service)</source><creator>Johnson, M.S. ; Beutler, J.L. ; Nelson, A.P. ; Hawkins, A.R.</creator><creatorcontrib>Johnson, M.S. ; Beutler, J.L. ; Nelson, A.P. ; Hawkins, A.R.</creatorcontrib><description>The Solid-state Impact-ionization Multiplier (SIM) was designed to amplify signals from arbitrary current sources through impact ionization. A primary application is amplification of signals produced by photodiodes. Photodiodes made from any semiconductor can be wired directly to the SIM's injection node. In previous versions of the SIM, this injection node was a Schottky contact to silicon. This paper describes a SIM design that injects electrons into the SIM's depletion region through a p-n junction. The injection node is analyzed including how the node's floating voltage changes versus input current. Devices were made using epitaxial silicon and modeled using commercial software. The measured gain characteristics match closely to simulated results and are influenced by high electric fields near the SIM's depletion region edges. Measured frequency response was dominated by charging effects related to the floating node, leading to a response that scales with the inverse of the input current.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2009.2019421</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Amplification ; Applied sciences ; Avalanche breakdown ; avalanche diodes ; Circuit properties ; Compound structure devices ; Depletion ; Devices ; Digital circuits ; Electric, optical and optoelectronic circuits ; Electronic circuits ; Electronic equipment and fabrication. Passive components, printed wiring boards, connectics ; Electronics ; Exact sciences and technology ; impact ionization ; Mathematical models ; Optoelectronic devices ; P-n junctions ; Photodiodes ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Semiconductors ; SIM</subject><ispartof>IEEE transactions on electron devices, 2009-06, Vol.56 (6), p.1360-1364</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-648e07eaa65eeb3e34f97163da9522d1c56a312c95475c06f76b3255c6999f8a3</citedby><cites>FETCH-LOGICAL-c383t-648e07eaa65eeb3e34f97163da9522d1c56a312c95475c06f76b3255c6999f8a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4895300$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21742014$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Johnson, M.S.</creatorcontrib><creatorcontrib>Beutler, J.L.</creatorcontrib><creatorcontrib>Nelson, A.P.</creatorcontrib><creatorcontrib>Hawkins, A.R.</creatorcontrib><title>Solid-State Impact-Ionization Multiplier With P-N Junction Injection Node</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>The Solid-state Impact-ionization Multiplier (SIM) was designed to amplify signals from arbitrary current sources through impact ionization. A primary application is amplification of signals produced by photodiodes. Photodiodes made from any semiconductor can be wired directly to the SIM's injection node. In previous versions of the SIM, this injection node was a Schottky contact to silicon. This paper describes a SIM design that injects electrons into the SIM's depletion region through a p-n junction. The injection node is analyzed including how the node's floating voltage changes versus input current. Devices were made using epitaxial silicon and modeled using commercial software. The measured gain characteristics match closely to simulated results and are influenced by high electric fields near the SIM's depletion region edges. Measured frequency response was dominated by charging effects related to the floating node, leading to a response that scales with the inverse of the input current.</description><subject>Amplification</subject><subject>Applied sciences</subject><subject>Avalanche breakdown</subject><subject>avalanche diodes</subject><subject>Circuit properties</subject><subject>Compound structure devices</subject><subject>Depletion</subject><subject>Devices</subject><subject>Digital circuits</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronic circuits</subject><subject>Electronic equipment and fabrication. Passive components, printed wiring boards, connectics</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>impact ionization</subject><subject>Mathematical models</subject><subject>Optoelectronic devices</subject><subject>P-n junctions</subject><subject>Photodiodes</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Semiconductors</subject><subject>SIM</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kU1Lw0AQhhdRsFbvgpcgqKfofmf3KLVqpFahFY_LdjvBLWlSs8lBf71bW3rw4GU-mGfeYXgROiX4mhCsb6bDu2uKsY6BaE7JHuoRIbJUSy73UQ9jolLNFDtERyEsYis5pz2UT-rSz9NJa1tI8uXKujbN68p_29bXVfLcla1flR6a5N23H8lrOk6eusr9DvNqAZtqXM_hGB0Utgxwss199HY_nA4e09HLQz64HaUuXm9TyRXgDKyVAmDGgPFCZ0SyudWC0jlxQlpGqNOCZ8JhWWRyxqgQTmqtC2VZH11tdFdN_dlBaM3SBwdlaSuou2CU1IpnWuhIXv5LMi6VyDiJ4PkfcFF3TRW_MEpITaMkjRDeQK6pQ2igMKvGL23zZQg2awtMtMCsLTBbC-LKxVbXBmfLorGV82G3R0nGI8ojd7bhPADsxlxpwTBmPwnejJY</recordid><startdate>20090601</startdate><enddate>20090601</enddate><creator>Johnson, M.S.</creator><creator>Beutler, J.L.</creator><creator>Nelson, A.P.</creator><creator>Hawkins, A.R.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20090601</creationdate><title>Solid-State Impact-Ionization Multiplier With P-N Junction Injection Node</title><author>Johnson, M.S. ; Beutler, J.L. ; Nelson, A.P. ; Hawkins, A.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-648e07eaa65eeb3e34f97163da9522d1c56a312c95475c06f76b3255c6999f8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Amplification</topic><topic>Applied sciences</topic><topic>Avalanche breakdown</topic><topic>avalanche diodes</topic><topic>Circuit properties</topic><topic>Compound structure devices</topic><topic>Depletion</topic><topic>Devices</topic><topic>Digital circuits</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronic circuits</topic><topic>Electronic equipment and fabrication. Passive components, printed wiring boards, connectics</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>impact ionization</topic><topic>Mathematical models</topic><topic>Optoelectronic devices</topic><topic>P-n junctions</topic><topic>Photodiodes</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Semiconductors</topic><topic>SIM</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Johnson, M.S.</creatorcontrib><creatorcontrib>Beutler, J.L.</creatorcontrib><creatorcontrib>Nelson, A.P.</creatorcontrib><creatorcontrib>Hawkins, A.R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEL</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Johnson, M.S.</au><au>Beutler, J.L.</au><au>Nelson, A.P.</au><au>Hawkins, A.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solid-State Impact-Ionization Multiplier With P-N Junction Injection Node</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2009-06-01</date><risdate>2009</risdate><volume>56</volume><issue>6</issue><spage>1360</spage><epage>1364</epage><pages>1360-1364</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>The Solid-state Impact-ionization Multiplier (SIM) was designed to amplify signals from arbitrary current sources through impact ionization. A primary application is amplification of signals produced by photodiodes. Photodiodes made from any semiconductor can be wired directly to the SIM's injection node. In previous versions of the SIM, this injection node was a Schottky contact to silicon. This paper describes a SIM design that injects electrons into the SIM's depletion region through a p-n junction. The injection node is analyzed including how the node's floating voltage changes versus input current. Devices were made using epitaxial silicon and modeled using commercial software. The measured gain characteristics match closely to simulated results and are influenced by high electric fields near the SIM's depletion region edges. Measured frequency response was dominated by charging effects related to the floating node, leading to a response that scales with the inverse of the input current.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TED.2009.2019421</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2009-06, Vol.56 (6), p.1360-1364
issn 0018-9383
1557-9646
language eng
recordid cdi_proquest_miscellaneous_869847959
source IEEE Xplore (Online service)
subjects Amplification
Applied sciences
Avalanche breakdown
avalanche diodes
Circuit properties
Compound structure devices
Depletion
Devices
Digital circuits
Electric, optical and optoelectronic circuits
Electronic circuits
Electronic equipment and fabrication. Passive components, printed wiring boards, connectics
Electronics
Exact sciences and technology
impact ionization
Mathematical models
Optoelectronic devices
P-n junctions
Photodiodes
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Semiconductors
SIM
title Solid-State Impact-Ionization Multiplier With P-N Junction Injection Node
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A45%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solid-State%20Impact-Ionization%20Multiplier%20With%20P-N%20Junction%20Injection%20Node&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Johnson,%20M.S.&rft.date=2009-06-01&rft.volume=56&rft.issue=6&rft.spage=1360&rft.epage=1364&rft.pages=1360-1364&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2009.2019421&rft_dat=%3Cproquest_pasca%3E2292067641%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c383t-648e07eaa65eeb3e34f97163da9522d1c56a312c95475c06f76b3255c6999f8a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=856928692&rft_id=info:pmid/&rft_ieee_id=4895300&rfr_iscdi=true