Loading…
Electrode boundary conditions and experimental validation for BEM-based EIT forward and inverse solutions
In this paper, we present theoretical developments and experimental results for the problem of estimating the conductivity map inside a volume using electrical impedance tomography (EIT) when the boundary locations of any internal inhomogeneities are known. We describe boundary element method (BEM)...
Saved in:
Published in: | IEEE transactions on medical imaging 2006-09, Vol.25 (9), p.1180-1188 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we present theoretical developments and experimental results for the problem of estimating the conductivity map inside a volume using electrical impedance tomography (EIT) when the boundary locations of any internal inhomogeneities are known. We describe boundary element method (BEM) implementations of advanced electrode models for the forward problem of EIT. We then use them in the inverse problem with known internal boundaries and derive the associated Jacobians. We report on the results of two EIT phantom studies, one using a homogeneous cubical tank, and one using a cylindrical tank with agar conductivity inhomogeneities. We test both the accuracy of our BEM forward model, including the electrode models, as well as our inverse solution, against the measured data. Results show good agreement between measured values and both forward-computed tank voltages and inverse-computed conductivities; for instance, in a phantom experiment, we reconstructed the conductivities of three agar objects inside a cylindrical tank with an error less than 2% of their true value |
---|---|
ISSN: | 0278-0062 1558-254X |
DOI: | 10.1109/TMI.2006.879957 |