Loading…

Finite element implementation of Maxwell's equations for image reconstruction in electrical impedance tomography

Traditionally, image reconstruction in electrical impedance tomography (EIT) has been based on Laplace's equation. However, at high frequencies the coupling between electric and magnetic fields requires solution of the full Maxwell equations. In this paper, a formulation is presented in terms o...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on medical imaging 2006-01, Vol.25 (1), p.55-61
Main Authors: Soni, N.K., Paulsen, K.D., Dehghani, H., Hartov, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Traditionally, image reconstruction in electrical impedance tomography (EIT) has been based on Laplace's equation. However, at high frequencies the coupling between electric and magnetic fields requires solution of the full Maxwell equations. In this paper, a formulation is presented in terms of the Maxwell equations expressed in scalar and vector potentials. The approach leads to boundary conditions that naturally align with the quantities measured by EIT instrumentation. A two-dimensional implementation for image reconstruction from EIT data is realized. The effect of frequency on the field distribution is illustrated using the high-frequency model and is compared with Laplace solutions. Numerical simulations and experimental results are also presented to illustrate image reconstruction over a range of frequencies using the new implementation. The results show that scalar/vector potential reconstruction produces images which are essentially indistinguishable from a Laplace algorithm for frequencies below 1 MHz but superior at frequencies reaching 10 MHz.
ISSN:0278-0062
1558-254X
DOI:10.1109/TMI.2005.861001