Loading…
Building Sparse Multiple-Kernel SVM Classifiers
The support vector machines (SVMs) have been very successful in many machine learning problems. However, they can be slow during testing because of the possibly large number of support vectors obtained. Recently, Wu (2005) proposed a sparse formulation that restricts the SVM to use a small number of...
Saved in:
Published in: | IEEE transaction on neural networks and learning systems 2009-05, Vol.20 (5), p.827-839 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The support vector machines (SVMs) have been very successful in many machine learning problems. However, they can be slow during testing because of the possibly large number of support vectors obtained. Recently, Wu (2005) proposed a sparse formulation that restricts the SVM to use a small number of expansion vectors. In this paper, we further extend this idea by integrating with techniques from multiple-kernel learning (MKL). The kernel function in this sparse SVM formulation no longer needs to be fixed but can be automatically learned as a linear combination of kernels. Two formulations of such sparse multiple-kernel classifiers are proposed. The first one is based on a convex combination of the given base kernels, while the second one uses a convex combination of the so-called ldquoequivalentrdquo kernels. Empirically, the second formulation is particularly competitive. Experiments on a large number of toy and real-world data sets show that the resultant classifier is compact and accurate, and can also be easily trained by simply alternating linear program and standard SVM solver. |
---|---|
ISSN: | 1045-9227 2162-237X 1941-0093 2162-2388 |
DOI: | 10.1109/TNN.2009.2014229 |