Loading…
SURE-Based Non-Local Means
Non-local means (NLM) provides a powerful framework for denoising. However, there are a few parameters of the algorithm-most notably, the width of the smoothing kernel-that are data-dependent and difficult to tune. Here, we propose to use Stein's unbiased risk estimate (SURE) to monitor the mea...
Saved in:
Published in: | IEEE signal processing letters 2009-11, Vol.16 (11), p.973-976 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Non-local means (NLM) provides a powerful framework for denoising. However, there are a few parameters of the algorithm-most notably, the width of the smoothing kernel-that are data-dependent and difficult to tune. Here, we propose to use Stein's unbiased risk estimate (SURE) to monitor the mean square error (MSE) of the NLM algorithm for restoration of an image corrupted by additive white Gaussian noise. The SURE principle allows to assess the MSE without knowledge of the noise-free signal. We derive an explicit analytical expression for SURE in the setting of NLM that can be incorporated in the implementation at low computational cost. Finally, we present experimental results that confirm the optimality of the proposed parameter selection. |
---|---|
ISSN: | 1070-9908 1558-2361 |
DOI: | 10.1109/LSP.2009.2027669 |