Loading…

Optimality of general reinsurance contracts under CTE risk measure

By formulating a constrained optimization model, we address the problem of optimal reinsurance design using the criterion of minimizing the conditional tail expectation (CTE) risk measure of the insurer’s total risk. For completeness, we analyze the optimal reinsurance model under both binding and u...

Full description

Saved in:
Bibliographic Details
Published in:Insurance, mathematics & economics mathematics & economics, 2011-09, Vol.49 (2), p.175-187
Main Authors: Tan, Ken Seng, Weng, Chengguo, Zhang, Yi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:By formulating a constrained optimization model, we address the problem of optimal reinsurance design using the criterion of minimizing the conditional tail expectation (CTE) risk measure of the insurer’s total risk. For completeness, we analyze the optimal reinsurance model under both binding and unbinding reinsurance premium constraints. By resorting to the Lagrangian approach based on the concept of directional derivative, explicit and analytical optimal solutions are obtained in each case under some mild conditions. We show that pure stop-loss ceded loss function is always optimal. More interestingly, we demonstrate that ceded loss functions, that are not always non-decreasing, could be optimal. We also show that, in some cases, it is optimal to exhaust the entire reinsurance premium budget to determine the optimal reinsurance, while in other cases, it is rational to spend less than the prescribed reinsurance premium budget.
ISSN:0167-6687
1873-5959
DOI:10.1016/j.insmatheco.2011.03.002