Loading…
A novel method for reliable nuclear antibody detection in tissue with high levels of pathology-induced autofluorescence
Immunofluorescence is the basis for many techniques used to quantify phenomena in neuroscience research, in both normal and pathological tissue. Autofluorescence (non-specific, broad spectrum background fluorescence) is an unfortunate consequence of damage to brain tissue. Damage-induced autofluores...
Saved in:
Published in: | Journal of neuroscience methods 2009-12, Vol.185 (1), p.45-49 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Immunofluorescence is the basis for many techniques used to quantify phenomena in neuroscience research, in both normal and pathological tissue. Autofluorescence (non-specific, broad spectrum background fluorescence) is an unfortunate consequence of damage to brain tissue. Damage-induced autofluorescence potentially confounds analyses of tissue labeled with fluorescent markers in many experiments. This is especially problematic in protocols that utilize co-localization methods such as BrdU/NeuN in which autofluorescence might lead to overestimates of the number of double-labeled cells. Techniques to reduce autofluorescence are variable and relatively ineffective in damaged brain tissue. Here we show using confocal microscopy that damage-induced autofluorescence does not co-localize with the nuclear specific markers DAPI or Hoechst. Further co-localization of nuclear markers such as Ki67 or BrdU/NeuN with DAPI or Hoechst should serve to help discriminate between intended and spurious fluorescent signal. |
---|---|
ISSN: | 0165-0270 1872-678X |
DOI: | 10.1016/j.jneumeth.2009.09.007 |