Fuzzy Regression Analysis by Support Vector Learning Approach

Support vector machines (SVMs) have been very successful in pattern classification and function approximation problems for crisp data. In this paper, we incorporate the concept of fuzzy set theory into the support vector regression machine. The parameters to be estimated in the SVM regression, such...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on fuzzy systems 2008-04, Vol.16 (2), p.428-441
Main Authors: Hao, Pei-Yi, Chiang, Jung-Hsien
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Support vector machines (SVMs) have been very successful in pattern classification and function approximation problems for crisp data. In this paper, we incorporate the concept of fuzzy set theory into the support vector regression machine. The parameters to be estimated in the SVM regression, such as the components within the weight vector and the bias term, are set to be the fuzzy numbers. This integration preserves the benefits of SVM regression model and fuzzy regression model and has been attempted to treat fuzzy nonlinear regression analysis. In contrast to previous fuzzy nonlinear regression models, the proposed algorithm is a model-free method in the sense that we do not have to assume the underlying model function. By using different kernel functions, we can construct different learning machines with arbitrary types of nonlinear regression functions. Moreover, the proposed method can achieve automatic accuracy control in the fuzzy regression analysis task. The upper bound on number of errors is controlled by the user-predefined parameters. Experimental results are then presented that indicate the performance of the proposed approach.
ISSN:1063-6706
1941-0034
DOI:10.1109/TFUZZ.2007.896359