Loading…

On the analysis of dispersion property and stable time step in meshfree method using the generalized meshfree approximation

This paper studies the dispersion characteristic and stable time step of the meshfree method in explicit dynamic problems using the generalized meshfree (GMF) approximation. In the dispersion analysis, the von Neumann method is applied to analyze the numerical dispersion errors for the spatial semi-...

Full description

Saved in:
Bibliographic Details
Published in:Finite elements in analysis and design 2011-07, Vol.47 (7), p.683-697
Main Authors: Park, C.K., Wu, C.T., Kan, C.D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper studies the dispersion characteristic and stable time step of the meshfree method in explicit dynamic problems using the generalized meshfree (GMF) approximation. In the dispersion analysis, the von Neumann method is applied to analyze the numerical dispersion errors for the spatial semi-discretization of a partial differential equation (PDE) in meshfree method using various approximations. The study emphasizes on the influence from the Kronecker-delta property in the approximation that is constructed using the GMF approximation and the full transformation method. In the stable time step analysis, we derive the analytical value of the critical time step based on the eigenvalue analysis. In addition, special attention is paid on the study of the boundary condition effect in suggesting a stable time step used for the practical analysis. Three full-discretization examples are presented to verify the study in the semi-discretization analysis.
ISSN:0168-874X
1872-6925
DOI:10.1016/j.finel.2011.02.001