Loading…
Pacemaker interference by magnetic fields at power line frequencies
Human exposure to external 50/60-Hz electric and magnetic fields induces electric fields within the body. These induced fields can cause interference with implanted pacemakers. In the case of exposure to magnetic fields, the pacemaker leads are subject to induced electromotive forces, with current r...
Saved in:
Published in: | IEEE transactions on biomedical engineering 2002-03, Vol.49 (3), p.254-262 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Human exposure to external 50/60-Hz electric and magnetic fields induces electric fields within the body. These induced fields can cause interference with implanted pacemakers. In the case of exposure to magnetic fields, the pacemaker leads are subject to induced electromotive forces, with current return paths being provided by the conducting body tissues. Modern computing resources used in conjunction with millimeter-scale human body conductivity models make numerical modeling a viable technique for examining any such interference. In this paper, an existing well-verified scalar-potential finite-difference frequency-domain code is modified to handle thin conducting wires embedded in the body. The effects of each wire can be included numerically by a simple modification to the existing code. Results are computed for two pacemaker lead insertion paths, terminating at either atrial or ventricular electrodes in the heart. Computations are performed for three orthogonal 60-Hz magnetic field orientations. Comparison with simplified estimates from Faraday's law applied directly to extracorporeal loops representing unipolar leads underscores problems associated with this simplified approach. Numerically estimated electromagnetic interference (EMI) levels under the worst case scenarios are about 40 /spl mu/T for atrial electrodes, and 140 /spl mu/T for ventricular electrodes. These methods could also be applied to studying EMI with other implanted devices such as cardiac defibrillators. |
---|---|
ISSN: | 0018-9294 1558-2531 |
DOI: | 10.1109/10.983460 |