Loading…

Bio-ethanol from water hyacinth biomass: An evaluation of enzymatic saccharification strategy

Biomass feedstock having less competition with food crops are desirable for bio-ethanol production and such resources may not be localized geographically. A distributed production strategy is therefore more suitable for feedstock like water hyacinth with a decentralized availability. In this study,...

Full description

Saved in:
Bibliographic Details
Published in:Bioresource technology 2010-02, Vol.101 (3), p.925-930
Main Authors: Aswathy, U.S., Sukumaran, Rajeev K., Devi, G. Lalitha, Rajasree, K.P., Singhania, Reeta Rani, Pandey, Ashok
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c517t-ec447bc723487d8fe2e4d248c859c998b45d08d0a876f6a4b49ec6ee35d38cad3
cites cdi_FETCH-LOGICAL-c517t-ec447bc723487d8fe2e4d248c859c998b45d08d0a876f6a4b49ec6ee35d38cad3
container_end_page 930
container_issue 3
container_start_page 925
container_title Bioresource technology
container_volume 101
creator Aswathy, U.S.
Sukumaran, Rajeev K.
Devi, G. Lalitha
Rajasree, K.P.
Singhania, Reeta Rani
Pandey, Ashok
description Biomass feedstock having less competition with food crops are desirable for bio-ethanol production and such resources may not be localized geographically. A distributed production strategy is therefore more suitable for feedstock like water hyacinth with a decentralized availability. In this study, we have demonstrated the suitability of this feedstock for production of fermentable sugars using cellulases produced on site. Testing of acid and alkali pretreatment methods indicated that alkali pretreatment was more efficient in making the sample susceptible to enzyme hydrolysis. Cellulase and β-glucosidase loading and the effect of surfactants were studied and optimized to improve saccharification. Redesigning of enzyme blends resulted in an improvement of saccharification from 57% to 71%. A crude trial on fermentation of the enzymatic hydrolysate using the common baker’s yeast Saccharomyces cerevisiae yielded an ethanol concentration of 4.4 g/L.
doi_str_mv 10.1016/j.biortech.2009.08.019
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_883034356</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960852409010475</els_id><sourcerecordid>883034356</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-ec447bc723487d8fe2e4d248c859c998b45d08d0a876f6a4b49ec6ee35d38cad3</originalsourceid><addsrcrecordid>eNqF0ctu1DAUBuAIgehQeIWSDZRNwvElvrCirbhJlVhAl8hynJOOR0nc2pmi4enxkAF27cqy_Pn8R_qL4oRATYCIt5u69SHO6NY1BdA1qBqIflSsiJKsolqKx8UKtIBKNZQfFc9S2gAAI5I-LY6Illpo1qyKH-c-VDiv7RSGso9hLH_aGWO53lnnp3ld5pjRpvSuPJtKvLPD1s4-TGXoS5x-7cZ8c2Wyzq1t9L13y2uaY55yvXtePOntkPDF4Twurj5--H7xubr8-unLxdll5Roi5wod57J1kjKuZKd6pMg7ypVTjXZaq5Y3HagOrJKiF5a3XKMTiKzpmHK2Y8fF6TL3JobbLabZjD45HAY7YdgmoxQDxlkjHpSScdCSMJ3l63slJZQoQfbwzb2QSJkH0kbyTMVCXQwpRezNTfSjjTtDwOx7NRvzt1ez79WAMvAn4-SQsW1H7P5_OxSZwasDsMnZoY92cj79c5SSTGG_wcvF9TYYex2zufpGgbAcriUVkMX7RWAu7M5jNMl5nBx2PqKbTRf8Q9v-BhQCzgE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1777132574</pqid></control><display><type>article</type><title>Bio-ethanol from water hyacinth biomass: An evaluation of enzymatic saccharification strategy</title><source>Elsevier</source><creator>Aswathy, U.S. ; Sukumaran, Rajeev K. ; Devi, G. Lalitha ; Rajasree, K.P. ; Singhania, Reeta Rani ; Pandey, Ashok</creator><creatorcontrib>Aswathy, U.S. ; Sukumaran, Rajeev K. ; Devi, G. Lalitha ; Rajasree, K.P. ; Singhania, Reeta Rani ; Pandey, Ashok</creatorcontrib><description>Biomass feedstock having less competition with food crops are desirable for bio-ethanol production and such resources may not be localized geographically. A distributed production strategy is therefore more suitable for feedstock like water hyacinth with a decentralized availability. In this study, we have demonstrated the suitability of this feedstock for production of fermentable sugars using cellulases produced on site. Testing of acid and alkali pretreatment methods indicated that alkali pretreatment was more efficient in making the sample susceptible to enzyme hydrolysis. Cellulase and β-glucosidase loading and the effect of surfactants were studied and optimized to improve saccharification. Redesigning of enzyme blends resulted in an improvement of saccharification from 57% to 71%. A crude trial on fermentation of the enzymatic hydrolysate using the common baker’s yeast Saccharomyces cerevisiae yielded an ethanol concentration of 4.4 g/L.</description><identifier>ISSN: 0960-8524</identifier><identifier>EISSN: 1873-2976</identifier><identifier>DOI: 10.1016/j.biortech.2009.08.019</identifier><identifier>PMID: 19796935</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>acid treatment ; alkali treatment ; Aspergillus niger - enzymology ; beta-glucosidase ; beta-Glucosidase - chemistry ; Bio-ethanol ; Biofuel production ; biofuels ; Biological and medical sciences ; Biomass ; Biotechnology ; Blends ; Cellulase - chemistry ; cellulases ; Eichhornia ; Eichhornia - metabolism ; Eichhornia crassipes ; Energy ; enzymatic hydrolysis ; Enzymes ; Ethanol - chemistry ; ethanol production ; Ethyl alcohol ; Feedstock ; Fermentation ; Fundamental and applied biological sciences. Psychology ; hydrolysates ; Hydrolysis ; Industrial applications and implications. Economical aspects ; Industrial Microbiology - methods ; lignocellulose ; Lignocellulosic biomass ; Models, Statistical ; Polysaccharides - chemistry ; Pretreatment ; raw materials ; reducing sugars ; renewable energy sources ; Saccharification ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - enzymology ; Strategy ; Trichoderma - enzymology ; Water hyacinth</subject><ispartof>Bioresource technology, 2010-02, Vol.101 (3), p.925-930</ispartof><rights>2009 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-ec447bc723487d8fe2e4d248c859c998b45d08d0a876f6a4b49ec6ee35d38cad3</citedby><cites>FETCH-LOGICAL-c517t-ec447bc723487d8fe2e4d248c859c998b45d08d0a876f6a4b49ec6ee35d38cad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22119704$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19796935$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aswathy, U.S.</creatorcontrib><creatorcontrib>Sukumaran, Rajeev K.</creatorcontrib><creatorcontrib>Devi, G. Lalitha</creatorcontrib><creatorcontrib>Rajasree, K.P.</creatorcontrib><creatorcontrib>Singhania, Reeta Rani</creatorcontrib><creatorcontrib>Pandey, Ashok</creatorcontrib><title>Bio-ethanol from water hyacinth biomass: An evaluation of enzymatic saccharification strategy</title><title>Bioresource technology</title><addtitle>Bioresour Technol</addtitle><description>Biomass feedstock having less competition with food crops are desirable for bio-ethanol production and such resources may not be localized geographically. A distributed production strategy is therefore more suitable for feedstock like water hyacinth with a decentralized availability. In this study, we have demonstrated the suitability of this feedstock for production of fermentable sugars using cellulases produced on site. Testing of acid and alkali pretreatment methods indicated that alkali pretreatment was more efficient in making the sample susceptible to enzyme hydrolysis. Cellulase and β-glucosidase loading and the effect of surfactants were studied and optimized to improve saccharification. Redesigning of enzyme blends resulted in an improvement of saccharification from 57% to 71%. A crude trial on fermentation of the enzymatic hydrolysate using the common baker’s yeast Saccharomyces cerevisiae yielded an ethanol concentration of 4.4 g/L.</description><subject>acid treatment</subject><subject>alkali treatment</subject><subject>Aspergillus niger - enzymology</subject><subject>beta-glucosidase</subject><subject>beta-Glucosidase - chemistry</subject><subject>Bio-ethanol</subject><subject>Biofuel production</subject><subject>biofuels</subject><subject>Biological and medical sciences</subject><subject>Biomass</subject><subject>Biotechnology</subject><subject>Blends</subject><subject>Cellulase - chemistry</subject><subject>cellulases</subject><subject>Eichhornia</subject><subject>Eichhornia - metabolism</subject><subject>Eichhornia crassipes</subject><subject>Energy</subject><subject>enzymatic hydrolysis</subject><subject>Enzymes</subject><subject>Ethanol - chemistry</subject><subject>ethanol production</subject><subject>Ethyl alcohol</subject><subject>Feedstock</subject><subject>Fermentation</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>hydrolysates</subject><subject>Hydrolysis</subject><subject>Industrial applications and implications. Economical aspects</subject><subject>Industrial Microbiology - methods</subject><subject>lignocellulose</subject><subject>Lignocellulosic biomass</subject><subject>Models, Statistical</subject><subject>Polysaccharides - chemistry</subject><subject>Pretreatment</subject><subject>raw materials</subject><subject>reducing sugars</subject><subject>renewable energy sources</subject><subject>Saccharification</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - enzymology</subject><subject>Strategy</subject><subject>Trichoderma - enzymology</subject><subject>Water hyacinth</subject><issn>0960-8524</issn><issn>1873-2976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqF0ctu1DAUBuAIgehQeIWSDZRNwvElvrCirbhJlVhAl8hynJOOR0nc2pmi4enxkAF27cqy_Pn8R_qL4oRATYCIt5u69SHO6NY1BdA1qBqIflSsiJKsolqKx8UKtIBKNZQfFc9S2gAAI5I-LY6Illpo1qyKH-c-VDiv7RSGso9hLH_aGWO53lnnp3ld5pjRpvSuPJtKvLPD1s4-TGXoS5x-7cZ8c2Wyzq1t9L13y2uaY55yvXtePOntkPDF4Twurj5--H7xubr8-unLxdll5Roi5wod57J1kjKuZKd6pMg7ypVTjXZaq5Y3HagOrJKiF5a3XKMTiKzpmHK2Y8fF6TL3JobbLabZjD45HAY7YdgmoxQDxlkjHpSScdCSMJ3l63slJZQoQfbwzb2QSJkH0kbyTMVCXQwpRezNTfSjjTtDwOx7NRvzt1ez79WAMvAn4-SQsW1H7P5_OxSZwasDsMnZoY92cj79c5SSTGG_wcvF9TYYex2zufpGgbAcriUVkMX7RWAu7M5jNMl5nBx2PqKbTRf8Q9v-BhQCzgE</recordid><startdate>20100201</startdate><enddate>20100201</enddate><creator>Aswathy, U.S.</creator><creator>Sukumaran, Rajeev K.</creator><creator>Devi, G. Lalitha</creator><creator>Rajasree, K.P.</creator><creator>Singhania, Reeta Rani</creator><creator>Pandey, Ashok</creator><general>Elsevier Ltd</general><general>[New York, NY]: Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20100201</creationdate><title>Bio-ethanol from water hyacinth biomass: An evaluation of enzymatic saccharification strategy</title><author>Aswathy, U.S. ; Sukumaran, Rajeev K. ; Devi, G. Lalitha ; Rajasree, K.P. ; Singhania, Reeta Rani ; Pandey, Ashok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-ec447bc723487d8fe2e4d248c859c998b45d08d0a876f6a4b49ec6ee35d38cad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>acid treatment</topic><topic>alkali treatment</topic><topic>Aspergillus niger - enzymology</topic><topic>beta-glucosidase</topic><topic>beta-Glucosidase - chemistry</topic><topic>Bio-ethanol</topic><topic>Biofuel production</topic><topic>biofuels</topic><topic>Biological and medical sciences</topic><topic>Biomass</topic><topic>Biotechnology</topic><topic>Blends</topic><topic>Cellulase - chemistry</topic><topic>cellulases</topic><topic>Eichhornia</topic><topic>Eichhornia - metabolism</topic><topic>Eichhornia crassipes</topic><topic>Energy</topic><topic>enzymatic hydrolysis</topic><topic>Enzymes</topic><topic>Ethanol - chemistry</topic><topic>ethanol production</topic><topic>Ethyl alcohol</topic><topic>Feedstock</topic><topic>Fermentation</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>hydrolysates</topic><topic>Hydrolysis</topic><topic>Industrial applications and implications. Economical aspects</topic><topic>Industrial Microbiology - methods</topic><topic>lignocellulose</topic><topic>Lignocellulosic biomass</topic><topic>Models, Statistical</topic><topic>Polysaccharides - chemistry</topic><topic>Pretreatment</topic><topic>raw materials</topic><topic>reducing sugars</topic><topic>renewable energy sources</topic><topic>Saccharification</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - enzymology</topic><topic>Strategy</topic><topic>Trichoderma - enzymology</topic><topic>Water hyacinth</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aswathy, U.S.</creatorcontrib><creatorcontrib>Sukumaran, Rajeev K.</creatorcontrib><creatorcontrib>Devi, G. Lalitha</creatorcontrib><creatorcontrib>Rajasree, K.P.</creatorcontrib><creatorcontrib>Singhania, Reeta Rani</creatorcontrib><creatorcontrib>Pandey, Ashok</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Bioresource technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aswathy, U.S.</au><au>Sukumaran, Rajeev K.</au><au>Devi, G. Lalitha</au><au>Rajasree, K.P.</au><au>Singhania, Reeta Rani</au><au>Pandey, Ashok</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bio-ethanol from water hyacinth biomass: An evaluation of enzymatic saccharification strategy</atitle><jtitle>Bioresource technology</jtitle><addtitle>Bioresour Technol</addtitle><date>2010-02-01</date><risdate>2010</risdate><volume>101</volume><issue>3</issue><spage>925</spage><epage>930</epage><pages>925-930</pages><issn>0960-8524</issn><eissn>1873-2976</eissn><abstract>Biomass feedstock having less competition with food crops are desirable for bio-ethanol production and such resources may not be localized geographically. A distributed production strategy is therefore more suitable for feedstock like water hyacinth with a decentralized availability. In this study, we have demonstrated the suitability of this feedstock for production of fermentable sugars using cellulases produced on site. Testing of acid and alkali pretreatment methods indicated that alkali pretreatment was more efficient in making the sample susceptible to enzyme hydrolysis. Cellulase and β-glucosidase loading and the effect of surfactants were studied and optimized to improve saccharification. Redesigning of enzyme blends resulted in an improvement of saccharification from 57% to 71%. A crude trial on fermentation of the enzymatic hydrolysate using the common baker’s yeast Saccharomyces cerevisiae yielded an ethanol concentration of 4.4 g/L.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>19796935</pmid><doi>10.1016/j.biortech.2009.08.019</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0960-8524
ispartof Bioresource technology, 2010-02, Vol.101 (3), p.925-930
issn 0960-8524
1873-2976
language eng
recordid cdi_proquest_miscellaneous_883034356
source Elsevier
subjects acid treatment
alkali treatment
Aspergillus niger - enzymology
beta-glucosidase
beta-Glucosidase - chemistry
Bio-ethanol
Biofuel production
biofuels
Biological and medical sciences
Biomass
Biotechnology
Blends
Cellulase - chemistry
cellulases
Eichhornia
Eichhornia - metabolism
Eichhornia crassipes
Energy
enzymatic hydrolysis
Enzymes
Ethanol - chemistry
ethanol production
Ethyl alcohol
Feedstock
Fermentation
Fundamental and applied biological sciences. Psychology
hydrolysates
Hydrolysis
Industrial applications and implications. Economical aspects
Industrial Microbiology - methods
lignocellulose
Lignocellulosic biomass
Models, Statistical
Polysaccharides - chemistry
Pretreatment
raw materials
reducing sugars
renewable energy sources
Saccharification
Saccharomyces cerevisiae
Saccharomyces cerevisiae - enzymology
Strategy
Trichoderma - enzymology
Water hyacinth
title Bio-ethanol from water hyacinth biomass: An evaluation of enzymatic saccharification strategy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A36%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bio-ethanol%20from%20water%20hyacinth%20biomass:%20An%20evaluation%20of%20enzymatic%20saccharification%20strategy&rft.jtitle=Bioresource%20technology&rft.au=Aswathy,%20U.S.&rft.date=2010-02-01&rft.volume=101&rft.issue=3&rft.spage=925&rft.epage=930&rft.pages=925-930&rft.issn=0960-8524&rft.eissn=1873-2976&rft_id=info:doi/10.1016/j.biortech.2009.08.019&rft_dat=%3Cproquest_cross%3E883034356%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c517t-ec447bc723487d8fe2e4d248c859c998b45d08d0a876f6a4b49ec6ee35d38cad3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1777132574&rft_id=info:pmid/19796935&rfr_iscdi=true