Loading…
Bio-ethanol from water hyacinth biomass: An evaluation of enzymatic saccharification strategy
Biomass feedstock having less competition with food crops are desirable for bio-ethanol production and such resources may not be localized geographically. A distributed production strategy is therefore more suitable for feedstock like water hyacinth with a decentralized availability. In this study,...
Saved in:
Published in: | Bioresource technology 2010-02, Vol.101 (3), p.925-930 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c517t-ec447bc723487d8fe2e4d248c859c998b45d08d0a876f6a4b49ec6ee35d38cad3 |
---|---|
cites | cdi_FETCH-LOGICAL-c517t-ec447bc723487d8fe2e4d248c859c998b45d08d0a876f6a4b49ec6ee35d38cad3 |
container_end_page | 930 |
container_issue | 3 |
container_start_page | 925 |
container_title | Bioresource technology |
container_volume | 101 |
creator | Aswathy, U.S. Sukumaran, Rajeev K. Devi, G. Lalitha Rajasree, K.P. Singhania, Reeta Rani Pandey, Ashok |
description | Biomass feedstock having less competition with food crops are desirable for bio-ethanol production and such resources may not be localized geographically. A distributed production strategy is therefore more suitable for feedstock like water hyacinth with a decentralized availability. In this study, we have demonstrated the suitability of this feedstock for production of fermentable sugars using cellulases produced on site. Testing of acid and alkali pretreatment methods indicated that alkali pretreatment was more efficient in making the sample susceptible to enzyme hydrolysis. Cellulase and β-glucosidase loading and the effect of surfactants were studied and optimized to improve saccharification. Redesigning of enzyme blends resulted in an improvement of saccharification from 57% to 71%. A crude trial on fermentation of the enzymatic hydrolysate using the common baker’s yeast
Saccharomyces cerevisiae yielded an ethanol concentration of 4.4
g/L. |
doi_str_mv | 10.1016/j.biortech.2009.08.019 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_883034356</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960852409010475</els_id><sourcerecordid>883034356</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-ec447bc723487d8fe2e4d248c859c998b45d08d0a876f6a4b49ec6ee35d38cad3</originalsourceid><addsrcrecordid>eNqF0ctu1DAUBuAIgehQeIWSDZRNwvElvrCirbhJlVhAl8hynJOOR0nc2pmi4enxkAF27cqy_Pn8R_qL4oRATYCIt5u69SHO6NY1BdA1qBqIflSsiJKsolqKx8UKtIBKNZQfFc9S2gAAI5I-LY6Illpo1qyKH-c-VDiv7RSGso9hLH_aGWO53lnnp3ld5pjRpvSuPJtKvLPD1s4-TGXoS5x-7cZ8c2Wyzq1t9L13y2uaY55yvXtePOntkPDF4Twurj5--H7xubr8-unLxdll5Roi5wod57J1kjKuZKd6pMg7ypVTjXZaq5Y3HagOrJKiF5a3XKMTiKzpmHK2Y8fF6TL3JobbLabZjD45HAY7YdgmoxQDxlkjHpSScdCSMJ3l63slJZQoQfbwzb2QSJkH0kbyTMVCXQwpRezNTfSjjTtDwOx7NRvzt1ez79WAMvAn4-SQsW1H7P5_OxSZwasDsMnZoY92cj79c5SSTGG_wcvF9TYYex2zufpGgbAcriUVkMX7RWAu7M5jNMl5nBx2PqKbTRf8Q9v-BhQCzgE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1777132574</pqid></control><display><type>article</type><title>Bio-ethanol from water hyacinth biomass: An evaluation of enzymatic saccharification strategy</title><source>Elsevier</source><creator>Aswathy, U.S. ; Sukumaran, Rajeev K. ; Devi, G. Lalitha ; Rajasree, K.P. ; Singhania, Reeta Rani ; Pandey, Ashok</creator><creatorcontrib>Aswathy, U.S. ; Sukumaran, Rajeev K. ; Devi, G. Lalitha ; Rajasree, K.P. ; Singhania, Reeta Rani ; Pandey, Ashok</creatorcontrib><description>Biomass feedstock having less competition with food crops are desirable for bio-ethanol production and such resources may not be localized geographically. A distributed production strategy is therefore more suitable for feedstock like water hyacinth with a decentralized availability. In this study, we have demonstrated the suitability of this feedstock for production of fermentable sugars using cellulases produced on site. Testing of acid and alkali pretreatment methods indicated that alkali pretreatment was more efficient in making the sample susceptible to enzyme hydrolysis. Cellulase and β-glucosidase loading and the effect of surfactants were studied and optimized to improve saccharification. Redesigning of enzyme blends resulted in an improvement of saccharification from 57% to 71%. A crude trial on fermentation of the enzymatic hydrolysate using the common baker’s yeast
Saccharomyces cerevisiae yielded an ethanol concentration of 4.4
g/L.</description><identifier>ISSN: 0960-8524</identifier><identifier>EISSN: 1873-2976</identifier><identifier>DOI: 10.1016/j.biortech.2009.08.019</identifier><identifier>PMID: 19796935</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>acid treatment ; alkali treatment ; Aspergillus niger - enzymology ; beta-glucosidase ; beta-Glucosidase - chemistry ; Bio-ethanol ; Biofuel production ; biofuels ; Biological and medical sciences ; Biomass ; Biotechnology ; Blends ; Cellulase - chemistry ; cellulases ; Eichhornia ; Eichhornia - metabolism ; Eichhornia crassipes ; Energy ; enzymatic hydrolysis ; Enzymes ; Ethanol - chemistry ; ethanol production ; Ethyl alcohol ; Feedstock ; Fermentation ; Fundamental and applied biological sciences. Psychology ; hydrolysates ; Hydrolysis ; Industrial applications and implications. Economical aspects ; Industrial Microbiology - methods ; lignocellulose ; Lignocellulosic biomass ; Models, Statistical ; Polysaccharides - chemistry ; Pretreatment ; raw materials ; reducing sugars ; renewable energy sources ; Saccharification ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - enzymology ; Strategy ; Trichoderma - enzymology ; Water hyacinth</subject><ispartof>Bioresource technology, 2010-02, Vol.101 (3), p.925-930</ispartof><rights>2009 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-ec447bc723487d8fe2e4d248c859c998b45d08d0a876f6a4b49ec6ee35d38cad3</citedby><cites>FETCH-LOGICAL-c517t-ec447bc723487d8fe2e4d248c859c998b45d08d0a876f6a4b49ec6ee35d38cad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22119704$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19796935$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aswathy, U.S.</creatorcontrib><creatorcontrib>Sukumaran, Rajeev K.</creatorcontrib><creatorcontrib>Devi, G. Lalitha</creatorcontrib><creatorcontrib>Rajasree, K.P.</creatorcontrib><creatorcontrib>Singhania, Reeta Rani</creatorcontrib><creatorcontrib>Pandey, Ashok</creatorcontrib><title>Bio-ethanol from water hyacinth biomass: An evaluation of enzymatic saccharification strategy</title><title>Bioresource technology</title><addtitle>Bioresour Technol</addtitle><description>Biomass feedstock having less competition with food crops are desirable for bio-ethanol production and such resources may not be localized geographically. A distributed production strategy is therefore more suitable for feedstock like water hyacinth with a decentralized availability. In this study, we have demonstrated the suitability of this feedstock for production of fermentable sugars using cellulases produced on site. Testing of acid and alkali pretreatment methods indicated that alkali pretreatment was more efficient in making the sample susceptible to enzyme hydrolysis. Cellulase and β-glucosidase loading and the effect of surfactants were studied and optimized to improve saccharification. Redesigning of enzyme blends resulted in an improvement of saccharification from 57% to 71%. A crude trial on fermentation of the enzymatic hydrolysate using the common baker’s yeast
Saccharomyces cerevisiae yielded an ethanol concentration of 4.4
g/L.</description><subject>acid treatment</subject><subject>alkali treatment</subject><subject>Aspergillus niger - enzymology</subject><subject>beta-glucosidase</subject><subject>beta-Glucosidase - chemistry</subject><subject>Bio-ethanol</subject><subject>Biofuel production</subject><subject>biofuels</subject><subject>Biological and medical sciences</subject><subject>Biomass</subject><subject>Biotechnology</subject><subject>Blends</subject><subject>Cellulase - chemistry</subject><subject>cellulases</subject><subject>Eichhornia</subject><subject>Eichhornia - metabolism</subject><subject>Eichhornia crassipes</subject><subject>Energy</subject><subject>enzymatic hydrolysis</subject><subject>Enzymes</subject><subject>Ethanol - chemistry</subject><subject>ethanol production</subject><subject>Ethyl alcohol</subject><subject>Feedstock</subject><subject>Fermentation</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>hydrolysates</subject><subject>Hydrolysis</subject><subject>Industrial applications and implications. Economical aspects</subject><subject>Industrial Microbiology - methods</subject><subject>lignocellulose</subject><subject>Lignocellulosic biomass</subject><subject>Models, Statistical</subject><subject>Polysaccharides - chemistry</subject><subject>Pretreatment</subject><subject>raw materials</subject><subject>reducing sugars</subject><subject>renewable energy sources</subject><subject>Saccharification</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - enzymology</subject><subject>Strategy</subject><subject>Trichoderma - enzymology</subject><subject>Water hyacinth</subject><issn>0960-8524</issn><issn>1873-2976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqF0ctu1DAUBuAIgehQeIWSDZRNwvElvrCirbhJlVhAl8hynJOOR0nc2pmi4enxkAF27cqy_Pn8R_qL4oRATYCIt5u69SHO6NY1BdA1qBqIflSsiJKsolqKx8UKtIBKNZQfFc9S2gAAI5I-LY6Illpo1qyKH-c-VDiv7RSGso9hLH_aGWO53lnnp3ld5pjRpvSuPJtKvLPD1s4-TGXoS5x-7cZ8c2Wyzq1t9L13y2uaY55yvXtePOntkPDF4Twurj5--H7xubr8-unLxdll5Roi5wod57J1kjKuZKd6pMg7ypVTjXZaq5Y3HagOrJKiF5a3XKMTiKzpmHK2Y8fF6TL3JobbLabZjD45HAY7YdgmoxQDxlkjHpSScdCSMJ3l63slJZQoQfbwzb2QSJkH0kbyTMVCXQwpRezNTfSjjTtDwOx7NRvzt1ez79WAMvAn4-SQsW1H7P5_OxSZwasDsMnZoY92cj79c5SSTGG_wcvF9TYYex2zufpGgbAcriUVkMX7RWAu7M5jNMl5nBx2PqKbTRf8Q9v-BhQCzgE</recordid><startdate>20100201</startdate><enddate>20100201</enddate><creator>Aswathy, U.S.</creator><creator>Sukumaran, Rajeev K.</creator><creator>Devi, G. Lalitha</creator><creator>Rajasree, K.P.</creator><creator>Singhania, Reeta Rani</creator><creator>Pandey, Ashok</creator><general>Elsevier Ltd</general><general>[New York, NY]: Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20100201</creationdate><title>Bio-ethanol from water hyacinth biomass: An evaluation of enzymatic saccharification strategy</title><author>Aswathy, U.S. ; Sukumaran, Rajeev K. ; Devi, G. Lalitha ; Rajasree, K.P. ; Singhania, Reeta Rani ; Pandey, Ashok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-ec447bc723487d8fe2e4d248c859c998b45d08d0a876f6a4b49ec6ee35d38cad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>acid treatment</topic><topic>alkali treatment</topic><topic>Aspergillus niger - enzymology</topic><topic>beta-glucosidase</topic><topic>beta-Glucosidase - chemistry</topic><topic>Bio-ethanol</topic><topic>Biofuel production</topic><topic>biofuels</topic><topic>Biological and medical sciences</topic><topic>Biomass</topic><topic>Biotechnology</topic><topic>Blends</topic><topic>Cellulase - chemistry</topic><topic>cellulases</topic><topic>Eichhornia</topic><topic>Eichhornia - metabolism</topic><topic>Eichhornia crassipes</topic><topic>Energy</topic><topic>enzymatic hydrolysis</topic><topic>Enzymes</topic><topic>Ethanol - chemistry</topic><topic>ethanol production</topic><topic>Ethyl alcohol</topic><topic>Feedstock</topic><topic>Fermentation</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>hydrolysates</topic><topic>Hydrolysis</topic><topic>Industrial applications and implications. Economical aspects</topic><topic>Industrial Microbiology - methods</topic><topic>lignocellulose</topic><topic>Lignocellulosic biomass</topic><topic>Models, Statistical</topic><topic>Polysaccharides - chemistry</topic><topic>Pretreatment</topic><topic>raw materials</topic><topic>reducing sugars</topic><topic>renewable energy sources</topic><topic>Saccharification</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - enzymology</topic><topic>Strategy</topic><topic>Trichoderma - enzymology</topic><topic>Water hyacinth</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aswathy, U.S.</creatorcontrib><creatorcontrib>Sukumaran, Rajeev K.</creatorcontrib><creatorcontrib>Devi, G. Lalitha</creatorcontrib><creatorcontrib>Rajasree, K.P.</creatorcontrib><creatorcontrib>Singhania, Reeta Rani</creatorcontrib><creatorcontrib>Pandey, Ashok</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Bioresource technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aswathy, U.S.</au><au>Sukumaran, Rajeev K.</au><au>Devi, G. Lalitha</au><au>Rajasree, K.P.</au><au>Singhania, Reeta Rani</au><au>Pandey, Ashok</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bio-ethanol from water hyacinth biomass: An evaluation of enzymatic saccharification strategy</atitle><jtitle>Bioresource technology</jtitle><addtitle>Bioresour Technol</addtitle><date>2010-02-01</date><risdate>2010</risdate><volume>101</volume><issue>3</issue><spage>925</spage><epage>930</epage><pages>925-930</pages><issn>0960-8524</issn><eissn>1873-2976</eissn><abstract>Biomass feedstock having less competition with food crops are desirable for bio-ethanol production and such resources may not be localized geographically. A distributed production strategy is therefore more suitable for feedstock like water hyacinth with a decentralized availability. In this study, we have demonstrated the suitability of this feedstock for production of fermentable sugars using cellulases produced on site. Testing of acid and alkali pretreatment methods indicated that alkali pretreatment was more efficient in making the sample susceptible to enzyme hydrolysis. Cellulase and β-glucosidase loading and the effect of surfactants were studied and optimized to improve saccharification. Redesigning of enzyme blends resulted in an improvement of saccharification from 57% to 71%. A crude trial on fermentation of the enzymatic hydrolysate using the common baker’s yeast
Saccharomyces cerevisiae yielded an ethanol concentration of 4.4
g/L.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>19796935</pmid><doi>10.1016/j.biortech.2009.08.019</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-8524 |
ispartof | Bioresource technology, 2010-02, Vol.101 (3), p.925-930 |
issn | 0960-8524 1873-2976 |
language | eng |
recordid | cdi_proquest_miscellaneous_883034356 |
source | Elsevier |
subjects | acid treatment alkali treatment Aspergillus niger - enzymology beta-glucosidase beta-Glucosidase - chemistry Bio-ethanol Biofuel production biofuels Biological and medical sciences Biomass Biotechnology Blends Cellulase - chemistry cellulases Eichhornia Eichhornia - metabolism Eichhornia crassipes Energy enzymatic hydrolysis Enzymes Ethanol - chemistry ethanol production Ethyl alcohol Feedstock Fermentation Fundamental and applied biological sciences. Psychology hydrolysates Hydrolysis Industrial applications and implications. Economical aspects Industrial Microbiology - methods lignocellulose Lignocellulosic biomass Models, Statistical Polysaccharides - chemistry Pretreatment raw materials reducing sugars renewable energy sources Saccharification Saccharomyces cerevisiae Saccharomyces cerevisiae - enzymology Strategy Trichoderma - enzymology Water hyacinth |
title | Bio-ethanol from water hyacinth biomass: An evaluation of enzymatic saccharification strategy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A36%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bio-ethanol%20from%20water%20hyacinth%20biomass:%20An%20evaluation%20of%20enzymatic%20saccharification%20strategy&rft.jtitle=Bioresource%20technology&rft.au=Aswathy,%20U.S.&rft.date=2010-02-01&rft.volume=101&rft.issue=3&rft.spage=925&rft.epage=930&rft.pages=925-930&rft.issn=0960-8524&rft.eissn=1873-2976&rft_id=info:doi/10.1016/j.biortech.2009.08.019&rft_dat=%3Cproquest_cross%3E883034356%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c517t-ec447bc723487d8fe2e4d248c859c998b45d08d0a876f6a4b49ec6ee35d38cad3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1777132574&rft_id=info:pmid/19796935&rfr_iscdi=true |