Loading…
REGULATION OF BIOSYNTHESIS OF DIMETHYLSULFONIOPROPIONATE AND ITS UPTAKE IN STERILE MUTANT OF ULVA PERTUSA (CHLOROPHYTA)
It has been shown that marine algae produce the compatible solute dimethylsulfoniopropionate (DMSP) from methionine (Met) via four enzymatic reactions in which the third step, synthesis of 4-dimethylsulfonio-2-hydroxy-butyrate (DMSHB) from 4-methylthio-2-hydroxybutyrate (MTHB), is the committing ste...
Saved in:
Published in: | Journal of phycology 2011-06, Vol.47 (3), p.517-523 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | It has been shown that marine algae produce the compatible solute dimethylsulfoniopropionate (DMSP) from methionine (Met) via four enzymatic reactions in which the third step, synthesis of 4-dimethylsulfonio-2-hydroxy-butyrate (DMSHB) from 4-methylthio-2-hydroxybutyrate (MTHB), is the committing step. However, regulation of the biosynthetic pathways and transport properties of DMSP is largely unknown. Here, the effects of sulfur and sodium concentrations on the uptake and synthesis of DMSHB and DMSP were examined in a sterile mutant of Ulva pertusa Kjellm. Sulfur deficiency increased the activity of the sulfur assimilation enzyme O-acetyl serine sulfhydrylase but decreased the MTHB S-methyltransferase activity, suggesting the preferential utilization of sulfur atoms for Met metabolites other than DMSP. Uptake of DMSP and DMSHB was enhanced by S deficiency. High salinity enhanced the MTHB S-methyltransferase activity as well as the uptake of DMSHB. The MTHB S-methyltransferase activity was inhibited by its product DMSP. These data demonstrate the importance of MTHB S-methyltransferase activity and uptake of DMSHB for the regulation of DMSP. |
---|---|
ISSN: | 0022-3646 1529-8817 |
DOI: | 10.1111/j.1529-8817.2011.00977.x |