Loading…

Plant-induced changes in soil nutrient dynamics by native and invasive grass species

Alteration of soil nutrient dynamics has recently garnered more attention as both a cause and an effect of plant invasion. This project examines how nutrient dynamics are affected by native (Elymus elymoides, Pseudoroegneria spicata, and Vulpia microstachys) and invasive (Aegilops triuncialis, Agrop...

Full description

Saved in:
Bibliographic Details
Published in:Plant and soil 2011-08, Vol.345 (1/2), p.365-374
Main Authors: Perkins, Lora B., Johnson, Dale W., Nowak, Robert S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Alteration of soil nutrient dynamics has recently garnered more attention as both a cause and an effect of plant invasion. This project examines how nutrient dynamics are affected by native (Elymus elymoides, Pseudoroegneria spicata, and Vulpia microstachys) and invasive (Aegilops triuncialis, Agropyron cristatum, Bromus tectorum, and Taeniatherum caput-medusae) grass species. This research questions whether natives and invasives differ in their effects on nutrient dynamics. A greenhouse study was conducted using two field-collected soils. Effects on nutrient dynamics were compared using an integrated index that evaluates the total nutrients in soil and in plant tissue compared to an unplanted control. With this index, we evaluated whether soil nutrients increased or decreased as a result of plant growth, controlling for plant uptake. We found no consistent support for our hypothesis that invasive grass species as a group influence nutrient dynamics differently than native grass species as a group. Our results indicate species-specific effects on nutrient dynamics. Alteration of nutrient dynamics is not a trait shared by all of the invasive grass species in our study. However, alteration of nutrient dynamics may be a mechanism by which some individual species increase their invasive potential.
ISSN:0032-079X
1573-5036
DOI:10.1007/s11104-011-0788-9