Loading…
Decreasing the spectral radius of a graph by link removals
The decrease of the spectral radius, an important characterizer of network dynamics, by removing links is investigated. The minimization of the spectral radius by removing m links is shown to be an NP-complete problem, which suggests considering heuristic strategies. Several greedy strategies are co...
Saved in:
Published in: | Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2011-07, Vol.84 (1 Pt 2), p.016101-016101, Article 016101 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The decrease of the spectral radius, an important characterizer of network dynamics, by removing links is investigated. The minimization of the spectral radius by removing m links is shown to be an NP-complete problem, which suggests considering heuristic strategies. Several greedy strategies are compared, and several bounds on the decrease of the spectral radius are derived. The strategy that removes that link l=i~j with largest product (x(1))(i)(x(1))(j) of the components of the eigenvector x(1) belonging to the largest adjacency eigenvalue is shown to be superior to other strategies in most cases. Furthermore, a scaling law where the decrease in spectral radius is inversely proportional to the number of nodes N in the graph is deduced. Another sublinear scaling law of the decrease in spectral radius versus the number m of removed links is conjectured. |
---|---|
ISSN: | 1539-3755 1550-2376 |
DOI: | 10.1103/PhysRevE.84.016101 |