Loading…

Intracellular signal transduction as a factor in the development of "Smart" biomaterials for bone tissue engineering

Signal transduction involves studying the intracellular mechanisms that govern cellular responses to external stimuli such as hormones, cytokines, and also cell adhesion to biomaterials surfaces. Several events have been shown to be responsible for cellular adhesion and adaptation onto different sur...

Full description

Saved in:
Bibliographic Details
Published in:Biotechnology and bioengineering 2011-06, Vol.108 (6), p.1246-1250
Main Authors: Zambuzzi, Willian F., Coelho, Paulo G., Alves, Gutemberg G., Granjeiro, José M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4847-f7c1f2ef403881f07f1e2ecac1273eb7b4d0103686035a0b5c172879673e80983
cites cdi_FETCH-LOGICAL-c4847-f7c1f2ef403881f07f1e2ecac1273eb7b4d0103686035a0b5c172879673e80983
container_end_page 1250
container_issue 6
container_start_page 1246
container_title Biotechnology and bioengineering
container_volume 108
creator Zambuzzi, Willian F.
Coelho, Paulo G.
Alves, Gutemberg G.
Granjeiro, José M.
description Signal transduction involves studying the intracellular mechanisms that govern cellular responses to external stimuli such as hormones, cytokines, and also cell adhesion to biomaterials surfaces. Several events have been shown to be responsible for cellular adhesion and adaptation onto different surfaces. For instance, cytoskeletal rearrangements during cell adhesion require the recruitment of specific protein tyrosine kinases into focal adhesion structures that promote transient focal adhesion kinase and Src phosphorylations, initially modulating cell behavior. In addition, the phosphorylation of tyrosine (Y) residues have been generally accepted as a critical regulator of a wide range of cell‐related processes, including cell proliferation, migration, differentiation, survival signalling, and energy metabolism. The understanding of the signaling involved on the mechanisms of osteoblast adhesion, proliferation, and differentiation on implant surfaces is fundamental for the successful design of novel “smart” materials, potentially decreasing the repair time, thereby allowing for faster patient rehabilitation. Biotechnol. Bioeng. © 2011 Wiley Periodicals, Inc.
doi_str_mv 10.1002/bit.23117
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_888099408</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1753498237</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4847-f7c1f2ef403881f07f1e2ecac1273eb7b4d0103686035a0b5c172879673e80983</originalsourceid><addsrcrecordid>eNqN0V1rFDEUBuAgit1WL_wDEhakejFtPmYmmUstWhcWhVpX8CZksidr6kxmTTJq_72Z7raCoHgVkjw5h5wXoSeUnFBC2Gnr0gnjlIp7aEZJIwrCGnIfzQghdcGrhh2gwxiv8lbIun6IDhjlFSWimqG08CloA103djrg6DZedzgf-bgeTXKDxzpija02aQjYeZy-AF7Dd-iGbQ8-4cHi-YdehzTHrRt6nSA43UVsM28HDzi5GEfA4DfOQ770m0fogc0EHu_XI_TxzevLs7fF8v354uzlsjClLEVhhaGWgS0Jl5JaIiwFBkYbygSHVrTlmlDCa1kTXmnSVoYKJkVT51tJGsmP0PGu7jYM30aISfUuTn_VHoYxKikza0ryH7JmeZbiRj7_p6Si4mUjGReZzv-gV8MY8nyneryUXDYTerFDJgwxBrBqG1we57WiRE3pqpyuukk326f7gmPbw_pO3saZwbM90NHozuYYjYu_XUlLJuTkTnfuh-vg-u8d1avF5W3rYvfCxQQ_717o8FXlcYtKfXp3rj6Li4vVckXUiv8CESbJSw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>863483897</pqid></control><display><type>article</type><title>Intracellular signal transduction as a factor in the development of "Smart" biomaterials for bone tissue engineering</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Zambuzzi, Willian F. ; Coelho, Paulo G. ; Alves, Gutemberg G. ; Granjeiro, José M.</creator><creatorcontrib>Zambuzzi, Willian F. ; Coelho, Paulo G. ; Alves, Gutemberg G. ; Granjeiro, José M.</creatorcontrib><description>Signal transduction involves studying the intracellular mechanisms that govern cellular responses to external stimuli such as hormones, cytokines, and also cell adhesion to biomaterials surfaces. Several events have been shown to be responsible for cellular adhesion and adaptation onto different surfaces. For instance, cytoskeletal rearrangements during cell adhesion require the recruitment of specific protein tyrosine kinases into focal adhesion structures that promote transient focal adhesion kinase and Src phosphorylations, initially modulating cell behavior. In addition, the phosphorylation of tyrosine (Y) residues have been generally accepted as a critical regulator of a wide range of cell‐related processes, including cell proliferation, migration, differentiation, survival signalling, and energy metabolism. The understanding of the signaling involved on the mechanisms of osteoblast adhesion, proliferation, and differentiation on implant surfaces is fundamental for the successful design of novel “smart” materials, potentially decreasing the repair time, thereby allowing for faster patient rehabilitation. Biotechnol. Bioeng. © 2011 Wiley Periodicals, Inc.</description><identifier>ISSN: 0006-3592</identifier><identifier>ISSN: 1097-0290</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/bit.23117</identifier><identifier>PMID: 21351075</identifier><identifier>CODEN: BIBIAU</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Adhesion ; Animals ; Biocompatible Materials - metabolism ; Bioengineering ; Biological and medical sciences ; Biomedical materials ; Biotechnology ; Cell Adhesion ; Cell adhesion &amp; migration ; Cellular ; Cytokines ; Cytoskeleton ; Fundamental and applied biological sciences. Psychology ; Health. Pharmaceutical industry ; Hormones ; Humans ; Implant ; Industrial applications and implications. Economical aspects ; Kinases ; Material Development ; Miscellaneous ; Osteoblasts - cytology ; Osteoblasts - metabolism ; Phosphorylation ; Prostheses and Implants ; Signal Transduction ; Surgical implants ; Tissue Engineering - methods ; Tyrosine</subject><ispartof>Biotechnology and bioengineering, 2011-06, Vol.108 (6), p.1246-1250</ispartof><rights>Copyright © 2011 Wiley Periodicals, Inc.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright John Wiley and Sons, Limited Jun 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4847-f7c1f2ef403881f07f1e2ecac1273eb7b4d0103686035a0b5c172879673e80983</citedby><cites>FETCH-LOGICAL-c4847-f7c1f2ef403881f07f1e2ecac1273eb7b4d0103686035a0b5c172879673e80983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24142785$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21351075$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zambuzzi, Willian F.</creatorcontrib><creatorcontrib>Coelho, Paulo G.</creatorcontrib><creatorcontrib>Alves, Gutemberg G.</creatorcontrib><creatorcontrib>Granjeiro, José M.</creatorcontrib><title>Intracellular signal transduction as a factor in the development of "Smart" biomaterials for bone tissue engineering</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol. Bioeng</addtitle><description>Signal transduction involves studying the intracellular mechanisms that govern cellular responses to external stimuli such as hormones, cytokines, and also cell adhesion to biomaterials surfaces. Several events have been shown to be responsible for cellular adhesion and adaptation onto different surfaces. For instance, cytoskeletal rearrangements during cell adhesion require the recruitment of specific protein tyrosine kinases into focal adhesion structures that promote transient focal adhesion kinase and Src phosphorylations, initially modulating cell behavior. In addition, the phosphorylation of tyrosine (Y) residues have been generally accepted as a critical regulator of a wide range of cell‐related processes, including cell proliferation, migration, differentiation, survival signalling, and energy metabolism. The understanding of the signaling involved on the mechanisms of osteoblast adhesion, proliferation, and differentiation on implant surfaces is fundamental for the successful design of novel “smart” materials, potentially decreasing the repair time, thereby allowing for faster patient rehabilitation. Biotechnol. Bioeng. © 2011 Wiley Periodicals, Inc.</description><subject>Adhesion</subject><subject>Animals</subject><subject>Biocompatible Materials - metabolism</subject><subject>Bioengineering</subject><subject>Biological and medical sciences</subject><subject>Biomedical materials</subject><subject>Biotechnology</subject><subject>Cell Adhesion</subject><subject>Cell adhesion &amp; migration</subject><subject>Cellular</subject><subject>Cytokines</subject><subject>Cytoskeleton</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Health. Pharmaceutical industry</subject><subject>Hormones</subject><subject>Humans</subject><subject>Implant</subject><subject>Industrial applications and implications. Economical aspects</subject><subject>Kinases</subject><subject>Material Development</subject><subject>Miscellaneous</subject><subject>Osteoblasts - cytology</subject><subject>Osteoblasts - metabolism</subject><subject>Phosphorylation</subject><subject>Prostheses and Implants</subject><subject>Signal Transduction</subject><subject>Surgical implants</subject><subject>Tissue Engineering - methods</subject><subject>Tyrosine</subject><issn>0006-3592</issn><issn>1097-0290</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqN0V1rFDEUBuAgit1WL_wDEhakejFtPmYmmUstWhcWhVpX8CZksidr6kxmTTJq_72Z7raCoHgVkjw5h5wXoSeUnFBC2Gnr0gnjlIp7aEZJIwrCGnIfzQghdcGrhh2gwxiv8lbIun6IDhjlFSWimqG08CloA103djrg6DZedzgf-bgeTXKDxzpija02aQjYeZy-AF7Dd-iGbQ8-4cHi-YdehzTHrRt6nSA43UVsM28HDzi5GEfA4DfOQ770m0fogc0EHu_XI_TxzevLs7fF8v354uzlsjClLEVhhaGWgS0Jl5JaIiwFBkYbygSHVrTlmlDCa1kTXmnSVoYKJkVT51tJGsmP0PGu7jYM30aISfUuTn_VHoYxKikza0ryH7JmeZbiRj7_p6Si4mUjGReZzv-gV8MY8nyneryUXDYTerFDJgwxBrBqG1we57WiRE3pqpyuukk326f7gmPbw_pO3saZwbM90NHozuYYjYu_XUlLJuTkTnfuh-vg-u8d1avF5W3rYvfCxQQ_717o8FXlcYtKfXp3rj6Li4vVckXUiv8CESbJSw</recordid><startdate>201106</startdate><enddate>201106</enddate><creator>Zambuzzi, Willian F.</creator><creator>Coelho, Paulo G.</creator><creator>Alves, Gutemberg G.</creator><creator>Granjeiro, José M.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201106</creationdate><title>Intracellular signal transduction as a factor in the development of "Smart" biomaterials for bone tissue engineering</title><author>Zambuzzi, Willian F. ; Coelho, Paulo G. ; Alves, Gutemberg G. ; Granjeiro, José M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4847-f7c1f2ef403881f07f1e2ecac1273eb7b4d0103686035a0b5c172879673e80983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adhesion</topic><topic>Animals</topic><topic>Biocompatible Materials - metabolism</topic><topic>Bioengineering</topic><topic>Biological and medical sciences</topic><topic>Biomedical materials</topic><topic>Biotechnology</topic><topic>Cell Adhesion</topic><topic>Cell adhesion &amp; migration</topic><topic>Cellular</topic><topic>Cytokines</topic><topic>Cytoskeleton</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Health. Pharmaceutical industry</topic><topic>Hormones</topic><topic>Humans</topic><topic>Implant</topic><topic>Industrial applications and implications. Economical aspects</topic><topic>Kinases</topic><topic>Material Development</topic><topic>Miscellaneous</topic><topic>Osteoblasts - cytology</topic><topic>Osteoblasts - metabolism</topic><topic>Phosphorylation</topic><topic>Prostheses and Implants</topic><topic>Signal Transduction</topic><topic>Surgical implants</topic><topic>Tissue Engineering - methods</topic><topic>Tyrosine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zambuzzi, Willian F.</creatorcontrib><creatorcontrib>Coelho, Paulo G.</creatorcontrib><creatorcontrib>Alves, Gutemberg G.</creatorcontrib><creatorcontrib>Granjeiro, José M.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zambuzzi, Willian F.</au><au>Coelho, Paulo G.</au><au>Alves, Gutemberg G.</au><au>Granjeiro, José M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intracellular signal transduction as a factor in the development of "Smart" biomaterials for bone tissue engineering</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol. Bioeng</addtitle><date>2011-06</date><risdate>2011</risdate><volume>108</volume><issue>6</issue><spage>1246</spage><epage>1250</epage><pages>1246-1250</pages><issn>0006-3592</issn><issn>1097-0290</issn><eissn>1097-0290</eissn><coden>BIBIAU</coden><abstract>Signal transduction involves studying the intracellular mechanisms that govern cellular responses to external stimuli such as hormones, cytokines, and also cell adhesion to biomaterials surfaces. Several events have been shown to be responsible for cellular adhesion and adaptation onto different surfaces. For instance, cytoskeletal rearrangements during cell adhesion require the recruitment of specific protein tyrosine kinases into focal adhesion structures that promote transient focal adhesion kinase and Src phosphorylations, initially modulating cell behavior. In addition, the phosphorylation of tyrosine (Y) residues have been generally accepted as a critical regulator of a wide range of cell‐related processes, including cell proliferation, migration, differentiation, survival signalling, and energy metabolism. The understanding of the signaling involved on the mechanisms of osteoblast adhesion, proliferation, and differentiation on implant surfaces is fundamental for the successful design of novel “smart” materials, potentially decreasing the repair time, thereby allowing for faster patient rehabilitation. Biotechnol. Bioeng. © 2011 Wiley Periodicals, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>21351075</pmid><doi>10.1002/bit.23117</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-3592
ispartof Biotechnology and bioengineering, 2011-06, Vol.108 (6), p.1246-1250
issn 0006-3592
1097-0290
1097-0290
language eng
recordid cdi_proquest_miscellaneous_888099408
source Wiley-Blackwell Read & Publish Collection
subjects Adhesion
Animals
Biocompatible Materials - metabolism
Bioengineering
Biological and medical sciences
Biomedical materials
Biotechnology
Cell Adhesion
Cell adhesion & migration
Cellular
Cytokines
Cytoskeleton
Fundamental and applied biological sciences. Psychology
Health. Pharmaceutical industry
Hormones
Humans
Implant
Industrial applications and implications. Economical aspects
Kinases
Material Development
Miscellaneous
Osteoblasts - cytology
Osteoblasts - metabolism
Phosphorylation
Prostheses and Implants
Signal Transduction
Surgical implants
Tissue Engineering - methods
Tyrosine
title Intracellular signal transduction as a factor in the development of "Smart" biomaterials for bone tissue engineering
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T12%3A54%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intracellular%20signal%20transduction%20as%20a%20factor%20in%20the%20development%20of%20%22Smart%22%20biomaterials%20for%20bone%20tissue%20engineering&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Zambuzzi,%20Willian%20F.&rft.date=2011-06&rft.volume=108&rft.issue=6&rft.spage=1246&rft.epage=1250&rft.pages=1246-1250&rft.issn=0006-3592&rft.eissn=1097-0290&rft.coden=BIBIAU&rft_id=info:doi/10.1002/bit.23117&rft_dat=%3Cproquest_cross%3E1753498237%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4847-f7c1f2ef403881f07f1e2ecac1273eb7b4d0103686035a0b5c172879673e80983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=863483897&rft_id=info:pmid/21351075&rfr_iscdi=true