Loading…
Intracellular signal transduction as a factor in the development of "Smart" biomaterials for bone tissue engineering
Signal transduction involves studying the intracellular mechanisms that govern cellular responses to external stimuli such as hormones, cytokines, and also cell adhesion to biomaterials surfaces. Several events have been shown to be responsible for cellular adhesion and adaptation onto different sur...
Saved in:
Published in: | Biotechnology and bioengineering 2011-06, Vol.108 (6), p.1246-1250 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4847-f7c1f2ef403881f07f1e2ecac1273eb7b4d0103686035a0b5c172879673e80983 |
---|---|
cites | cdi_FETCH-LOGICAL-c4847-f7c1f2ef403881f07f1e2ecac1273eb7b4d0103686035a0b5c172879673e80983 |
container_end_page | 1250 |
container_issue | 6 |
container_start_page | 1246 |
container_title | Biotechnology and bioengineering |
container_volume | 108 |
creator | Zambuzzi, Willian F. Coelho, Paulo G. Alves, Gutemberg G. Granjeiro, José M. |
description | Signal transduction involves studying the intracellular mechanisms that govern cellular responses to external stimuli such as hormones, cytokines, and also cell adhesion to biomaterials surfaces. Several events have been shown to be responsible for cellular adhesion and adaptation onto different surfaces. For instance, cytoskeletal rearrangements during cell adhesion require the recruitment of specific protein tyrosine kinases into focal adhesion structures that promote transient focal adhesion kinase and Src phosphorylations, initially modulating cell behavior. In addition, the phosphorylation of tyrosine (Y) residues have been generally accepted as a critical regulator of a wide range of cell‐related processes, including cell proliferation, migration, differentiation, survival signalling, and energy metabolism. The understanding of the signaling involved on the mechanisms of osteoblast adhesion, proliferation, and differentiation on implant surfaces is fundamental for the successful design of novel “smart” materials, potentially decreasing the repair time, thereby allowing for faster patient rehabilitation. Biotechnol. Bioeng. © 2011 Wiley Periodicals, Inc. |
doi_str_mv | 10.1002/bit.23117 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_888099408</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1753498237</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4847-f7c1f2ef403881f07f1e2ecac1273eb7b4d0103686035a0b5c172879673e80983</originalsourceid><addsrcrecordid>eNqN0V1rFDEUBuAgit1WL_wDEhakejFtPmYmmUstWhcWhVpX8CZksidr6kxmTTJq_72Z7raCoHgVkjw5h5wXoSeUnFBC2Gnr0gnjlIp7aEZJIwrCGnIfzQghdcGrhh2gwxiv8lbIun6IDhjlFSWimqG08CloA103djrg6DZedzgf-bgeTXKDxzpija02aQjYeZy-AF7Dd-iGbQ8-4cHi-YdehzTHrRt6nSA43UVsM28HDzi5GEfA4DfOQ770m0fogc0EHu_XI_TxzevLs7fF8v354uzlsjClLEVhhaGWgS0Jl5JaIiwFBkYbygSHVrTlmlDCa1kTXmnSVoYKJkVT51tJGsmP0PGu7jYM30aISfUuTn_VHoYxKikza0ryH7JmeZbiRj7_p6Si4mUjGReZzv-gV8MY8nyneryUXDYTerFDJgwxBrBqG1we57WiRE3pqpyuukk326f7gmPbw_pO3saZwbM90NHozuYYjYu_XUlLJuTkTnfuh-vg-u8d1avF5W3rYvfCxQQ_717o8FXlcYtKfXp3rj6Li4vVckXUiv8CESbJSw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>863483897</pqid></control><display><type>article</type><title>Intracellular signal transduction as a factor in the development of "Smart" biomaterials for bone tissue engineering</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Zambuzzi, Willian F. ; Coelho, Paulo G. ; Alves, Gutemberg G. ; Granjeiro, José M.</creator><creatorcontrib>Zambuzzi, Willian F. ; Coelho, Paulo G. ; Alves, Gutemberg G. ; Granjeiro, José M.</creatorcontrib><description>Signal transduction involves studying the intracellular mechanisms that govern cellular responses to external stimuli such as hormones, cytokines, and also cell adhesion to biomaterials surfaces. Several events have been shown to be responsible for cellular adhesion and adaptation onto different surfaces. For instance, cytoskeletal rearrangements during cell adhesion require the recruitment of specific protein tyrosine kinases into focal adhesion structures that promote transient focal adhesion kinase and Src phosphorylations, initially modulating cell behavior. In addition, the phosphorylation of tyrosine (Y) residues have been generally accepted as a critical regulator of a wide range of cell‐related processes, including cell proliferation, migration, differentiation, survival signalling, and energy metabolism. The understanding of the signaling involved on the mechanisms of osteoblast adhesion, proliferation, and differentiation on implant surfaces is fundamental for the successful design of novel “smart” materials, potentially decreasing the repair time, thereby allowing for faster patient rehabilitation. Biotechnol. Bioeng. © 2011 Wiley Periodicals, Inc.</description><identifier>ISSN: 0006-3592</identifier><identifier>ISSN: 1097-0290</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/bit.23117</identifier><identifier>PMID: 21351075</identifier><identifier>CODEN: BIBIAU</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Adhesion ; Animals ; Biocompatible Materials - metabolism ; Bioengineering ; Biological and medical sciences ; Biomedical materials ; Biotechnology ; Cell Adhesion ; Cell adhesion & migration ; Cellular ; Cytokines ; Cytoskeleton ; Fundamental and applied biological sciences. Psychology ; Health. Pharmaceutical industry ; Hormones ; Humans ; Implant ; Industrial applications and implications. Economical aspects ; Kinases ; Material Development ; Miscellaneous ; Osteoblasts - cytology ; Osteoblasts - metabolism ; Phosphorylation ; Prostheses and Implants ; Signal Transduction ; Surgical implants ; Tissue Engineering - methods ; Tyrosine</subject><ispartof>Biotechnology and bioengineering, 2011-06, Vol.108 (6), p.1246-1250</ispartof><rights>Copyright © 2011 Wiley Periodicals, Inc.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright John Wiley and Sons, Limited Jun 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4847-f7c1f2ef403881f07f1e2ecac1273eb7b4d0103686035a0b5c172879673e80983</citedby><cites>FETCH-LOGICAL-c4847-f7c1f2ef403881f07f1e2ecac1273eb7b4d0103686035a0b5c172879673e80983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24142785$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21351075$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zambuzzi, Willian F.</creatorcontrib><creatorcontrib>Coelho, Paulo G.</creatorcontrib><creatorcontrib>Alves, Gutemberg G.</creatorcontrib><creatorcontrib>Granjeiro, José M.</creatorcontrib><title>Intracellular signal transduction as a factor in the development of "Smart" biomaterials for bone tissue engineering</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol. Bioeng</addtitle><description>Signal transduction involves studying the intracellular mechanisms that govern cellular responses to external stimuli such as hormones, cytokines, and also cell adhesion to biomaterials surfaces. Several events have been shown to be responsible for cellular adhesion and adaptation onto different surfaces. For instance, cytoskeletal rearrangements during cell adhesion require the recruitment of specific protein tyrosine kinases into focal adhesion structures that promote transient focal adhesion kinase and Src phosphorylations, initially modulating cell behavior. In addition, the phosphorylation of tyrosine (Y) residues have been generally accepted as a critical regulator of a wide range of cell‐related processes, including cell proliferation, migration, differentiation, survival signalling, and energy metabolism. The understanding of the signaling involved on the mechanisms of osteoblast adhesion, proliferation, and differentiation on implant surfaces is fundamental for the successful design of novel “smart” materials, potentially decreasing the repair time, thereby allowing for faster patient rehabilitation. Biotechnol. Bioeng. © 2011 Wiley Periodicals, Inc.</description><subject>Adhesion</subject><subject>Animals</subject><subject>Biocompatible Materials - metabolism</subject><subject>Bioengineering</subject><subject>Biological and medical sciences</subject><subject>Biomedical materials</subject><subject>Biotechnology</subject><subject>Cell Adhesion</subject><subject>Cell adhesion & migration</subject><subject>Cellular</subject><subject>Cytokines</subject><subject>Cytoskeleton</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Health. Pharmaceutical industry</subject><subject>Hormones</subject><subject>Humans</subject><subject>Implant</subject><subject>Industrial applications and implications. Economical aspects</subject><subject>Kinases</subject><subject>Material Development</subject><subject>Miscellaneous</subject><subject>Osteoblasts - cytology</subject><subject>Osteoblasts - metabolism</subject><subject>Phosphorylation</subject><subject>Prostheses and Implants</subject><subject>Signal Transduction</subject><subject>Surgical implants</subject><subject>Tissue Engineering - methods</subject><subject>Tyrosine</subject><issn>0006-3592</issn><issn>1097-0290</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqN0V1rFDEUBuAgit1WL_wDEhakejFtPmYmmUstWhcWhVpX8CZksidr6kxmTTJq_72Z7raCoHgVkjw5h5wXoSeUnFBC2Gnr0gnjlIp7aEZJIwrCGnIfzQghdcGrhh2gwxiv8lbIun6IDhjlFSWimqG08CloA103djrg6DZedzgf-bgeTXKDxzpija02aQjYeZy-AF7Dd-iGbQ8-4cHi-YdehzTHrRt6nSA43UVsM28HDzi5GEfA4DfOQ770m0fogc0EHu_XI_TxzevLs7fF8v354uzlsjClLEVhhaGWgS0Jl5JaIiwFBkYbygSHVrTlmlDCa1kTXmnSVoYKJkVT51tJGsmP0PGu7jYM30aISfUuTn_VHoYxKikza0ryH7JmeZbiRj7_p6Si4mUjGReZzv-gV8MY8nyneryUXDYTerFDJgwxBrBqG1we57WiRE3pqpyuukk326f7gmPbw_pO3saZwbM90NHozuYYjYu_XUlLJuTkTnfuh-vg-u8d1avF5W3rYvfCxQQ_717o8FXlcYtKfXp3rj6Li4vVckXUiv8CESbJSw</recordid><startdate>201106</startdate><enddate>201106</enddate><creator>Zambuzzi, Willian F.</creator><creator>Coelho, Paulo G.</creator><creator>Alves, Gutemberg G.</creator><creator>Granjeiro, José M.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201106</creationdate><title>Intracellular signal transduction as a factor in the development of "Smart" biomaterials for bone tissue engineering</title><author>Zambuzzi, Willian F. ; Coelho, Paulo G. ; Alves, Gutemberg G. ; Granjeiro, José M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4847-f7c1f2ef403881f07f1e2ecac1273eb7b4d0103686035a0b5c172879673e80983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adhesion</topic><topic>Animals</topic><topic>Biocompatible Materials - metabolism</topic><topic>Bioengineering</topic><topic>Biological and medical sciences</topic><topic>Biomedical materials</topic><topic>Biotechnology</topic><topic>Cell Adhesion</topic><topic>Cell adhesion & migration</topic><topic>Cellular</topic><topic>Cytokines</topic><topic>Cytoskeleton</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Health. Pharmaceutical industry</topic><topic>Hormones</topic><topic>Humans</topic><topic>Implant</topic><topic>Industrial applications and implications. Economical aspects</topic><topic>Kinases</topic><topic>Material Development</topic><topic>Miscellaneous</topic><topic>Osteoblasts - cytology</topic><topic>Osteoblasts - metabolism</topic><topic>Phosphorylation</topic><topic>Prostheses and Implants</topic><topic>Signal Transduction</topic><topic>Surgical implants</topic><topic>Tissue Engineering - methods</topic><topic>Tyrosine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zambuzzi, Willian F.</creatorcontrib><creatorcontrib>Coelho, Paulo G.</creatorcontrib><creatorcontrib>Alves, Gutemberg G.</creatorcontrib><creatorcontrib>Granjeiro, José M.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zambuzzi, Willian F.</au><au>Coelho, Paulo G.</au><au>Alves, Gutemberg G.</au><au>Granjeiro, José M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intracellular signal transduction as a factor in the development of "Smart" biomaterials for bone tissue engineering</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol. Bioeng</addtitle><date>2011-06</date><risdate>2011</risdate><volume>108</volume><issue>6</issue><spage>1246</spage><epage>1250</epage><pages>1246-1250</pages><issn>0006-3592</issn><issn>1097-0290</issn><eissn>1097-0290</eissn><coden>BIBIAU</coden><abstract>Signal transduction involves studying the intracellular mechanisms that govern cellular responses to external stimuli such as hormones, cytokines, and also cell adhesion to biomaterials surfaces. Several events have been shown to be responsible for cellular adhesion and adaptation onto different surfaces. For instance, cytoskeletal rearrangements during cell adhesion require the recruitment of specific protein tyrosine kinases into focal adhesion structures that promote transient focal adhesion kinase and Src phosphorylations, initially modulating cell behavior. In addition, the phosphorylation of tyrosine (Y) residues have been generally accepted as a critical regulator of a wide range of cell‐related processes, including cell proliferation, migration, differentiation, survival signalling, and energy metabolism. The understanding of the signaling involved on the mechanisms of osteoblast adhesion, proliferation, and differentiation on implant surfaces is fundamental for the successful design of novel “smart” materials, potentially decreasing the repair time, thereby allowing for faster patient rehabilitation. Biotechnol. Bioeng. © 2011 Wiley Periodicals, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>21351075</pmid><doi>10.1002/bit.23117</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3592 |
ispartof | Biotechnology and bioengineering, 2011-06, Vol.108 (6), p.1246-1250 |
issn | 0006-3592 1097-0290 1097-0290 |
language | eng |
recordid | cdi_proquest_miscellaneous_888099408 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Adhesion Animals Biocompatible Materials - metabolism Bioengineering Biological and medical sciences Biomedical materials Biotechnology Cell Adhesion Cell adhesion & migration Cellular Cytokines Cytoskeleton Fundamental and applied biological sciences. Psychology Health. Pharmaceutical industry Hormones Humans Implant Industrial applications and implications. Economical aspects Kinases Material Development Miscellaneous Osteoblasts - cytology Osteoblasts - metabolism Phosphorylation Prostheses and Implants Signal Transduction Surgical implants Tissue Engineering - methods Tyrosine |
title | Intracellular signal transduction as a factor in the development of "Smart" biomaterials for bone tissue engineering |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T12%3A54%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intracellular%20signal%20transduction%20as%20a%20factor%20in%20the%20development%20of%20%22Smart%22%20biomaterials%20for%20bone%20tissue%20engineering&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Zambuzzi,%20Willian%20F.&rft.date=2011-06&rft.volume=108&rft.issue=6&rft.spage=1246&rft.epage=1250&rft.pages=1246-1250&rft.issn=0006-3592&rft.eissn=1097-0290&rft.coden=BIBIAU&rft_id=info:doi/10.1002/bit.23117&rft_dat=%3Cproquest_cross%3E1753498237%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4847-f7c1f2ef403881f07f1e2ecac1273eb7b4d0103686035a0b5c172879673e80983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=863483897&rft_id=info:pmid/21351075&rfr_iscdi=true |