Loading…

High Propylene Selectivity in Methanol-to-olefin Reaction over H-ZSM-5 Catalyst Treated with Phosphoric Acid

H-ZSM-5 zeolite was treated with phosphorus acid by impregnating H-ZSM-5 with aqueous solutions of phosphoric acid at various concentrations. H-ZSM-5 (P-HZSM-5) modified with phosphoric acid was used as a catalyst for the methanol-to-olefin reaction. The molar ratios of P/Si and Si/Al in H-ZSM-5 and...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Japan Petroleum Institute 2010, Vol.53(4), pp.232-238
Main Authors: Vu, Dung Van, Hirota, Yuichiro, Nishiyama, Norikazu, Egashira, Yasuyuki, Ueyama, Korekazu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:H-ZSM-5 zeolite was treated with phosphorus acid by impregnating H-ZSM-5 with aqueous solutions of phosphoric acid at various concentrations. H-ZSM-5 (P-HZSM-5) modified with phosphoric acid was used as a catalyst for the methanol-to-olefin reaction. The molar ratios of P/Si and Si/Al in H-ZSM-5 and P-HZSM-5 were measured by EDX analysis. The Si/Al molar ratios of P-HZSM-5 increased with higher concentration of H3PO4 in the solution, which might be caused by partial dealumination of H-ZSM-5 by the H3PO4 treatment. The P/Si molar ratio of P-HZSM-5 after washing was proportional to the H3PO4 concentrations in the aqueous solutions. The remaining phosphorus species after the washing must be strongly adsorbed by interaction with the pore surface of H-ZSM-5 zeolite. The P-HZSM-5 catalyst showed very high propylene selectivity up to 57% with methanol conversion of 100%. Furthermore, catalyst stability was significantly improved for the P-HZSM-5 catalysts. Ammonia TPD spectra showed that the strong acid sites of H-ZSM-5 disappeared after the phosphoric acid treatment. Consequently, the formation of aromatics and coke was inhibited, resulting in higher light olefin selectivity and catalyst stability.
ISSN:1346-8804
1349-273X
1349-273X
DOI:10.1627/jpi.53.232