Loading…

Achieving matrix consistency in AHP through linearization

Matrices used in the analytic hierarchy process (AHP) compile expert knowledge as pairwise comparisons among various criteria and alternatives in decision-making problems. Many items are usually considered in the same comparison process and so judgment is not completely consistent – and sometimes th...

Full description

Saved in:
Bibliographic Details
Published in:Applied mathematical modelling 2011-09, Vol.35 (9), p.4449-4457
Main Authors: Benítez, Julio, Delgado-Galván, Xitlali, Izquierdo, Joaquín, Pérez-García, Rafael
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Matrices used in the analytic hierarchy process (AHP) compile expert knowledge as pairwise comparisons among various criteria and alternatives in decision-making problems. Many items are usually considered in the same comparison process and so judgment is not completely consistent – and sometimes the level of consistency may be unacceptable. Different methods have been used in the literature to achieve consistency for an inconsistent matrix. In this paper we use a linearization technique that provides the closest consistent matrix to a given inconsistent matrix using orthogonal projection in a linear space. As a result, consistency can be achieved in a closed form. This is simpler and cheaper than for methods relying on optimisation, which are iterative by nature. We apply the process to a real-world decision-making problem in an important industrial context, namely, management of water supply systems regarding leakage policies – an aspect of water management to which great sums of money are devoted every year worldwide.
ISSN:0307-904X
DOI:10.1016/j.apm.2011.03.013