Loading…

High order accurate semi-implicit WENO schemes for hyperbolic balance laws

In this paper we propose a family of well-balanced semi-implicit numerical schemes for hyperbolic conservation and balance laws. The basic idea of the proposed schemes lies in the combination of the finite volume WENO discretization with Roe’s solver and the strong stability preserving (SSP) time in...

Full description

Saved in:
Bibliographic Details
Published in:Applied mathematics and computation 2011-07, Vol.217 (21), p.8611-8629
Main Authors: CRNJARIC-ZIC, Nelida, CRNKOVIC, Bojan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper we propose a family of well-balanced semi-implicit numerical schemes for hyperbolic conservation and balance laws. The basic idea of the proposed schemes lies in the combination of the finite volume WENO discretization with Roe’s solver and the strong stability preserving (SSP) time integration methods, which ensure the stability properties of the considered schemes [S. Gottlieb, C.-W. Shu, E. Tadmor, Strong stability-preserving high-order time discretization methods, SIAM Rev. 43 (2001) 89–112]. While standard WENO schemes typically use explicit time integration methods, in this paper we are combining WENO spatial discretization with optimal SSP singly diagonally implicit (SDIRK) methods developed in [L. Ferracina, M.N. Spijker, Strong stability of singly diagonally implicit Runge–Kutta methods, Appl. Numer. Math. 58 (2008) 1675–1686]. In this way the implicit WENO numerical schemes are obtained. In order to reduce the computational effort, the implicit part of the numerical scheme is linearized in time by taking into account the complete WENO reconstruction procedure. With the proposed linearization the new semi-implicit finite volume WENO schemes are designed. A detailed numerical investigation of the proposed numerical schemes is presented in the paper. More precisely, schemes are tested on one-dimensional linear scalar equation and on non-linear conservation law systems. Furthermore, well-balanced semi-implicit WENO schemes for balance laws with geometrical source terms are defined. Such schemes are then applied to the open channel flow equations. We prove that the defined numerical schemes maintain steady state solution of still water. The application of the new schemes to different open channel flow examples is shown.
ISSN:0096-3003
1873-5649
DOI:10.1016/j.amc.2011.03.098